0000000000319909
AUTHOR
Ingo Köper
Adsorption and Conformation Behavior of Biotinylated Fibronectin on Streptavidin-Modified TiOX Surfaces Studied by SPR and AFM
It is well-known that protein-modified implant surfaces such as TiO(2) show a higher bioconductivity. Fibronectin is a glycoprotein from the extracellular matrix (ECM) with a major role in cell adhesion. It can be applied on titanium oxide surfaces to accelerate implant integration. Not only the surface concentration but also the presentation of the protein plays an important role for the cellular response. We were able to show that TiO(X) surfaces modified with biotinylated fibronectin adsorbed on a streptavidin-silane self-assembly multilayer system are more effective regarding osteoblast adhesion than surfaces modified with nonspecifically bound fibronectin. The adsorption and conformati…
Streptavidin-coated TiO2 surfaces are biologically inert: Protein adsorption and osteoblast adhesion studies
Non-fouling TiO2 surfaces are attractive for a wide range of applications such as biosensors and medical devices, where biologically inert surfaces are needed. Typically, this is achieved by controlled surface modifications which prevent protein adsorption. For example, polyethylene glycol (PEG) or PEG-derived polymers have been widely applied to render TiO2 surfaces biologically inert. These surfaces have been further modified in order to achieve specific bio-activation. Therefore, there have been efforts to specifically functionalize TiO2 surfaces with polymers with embedded biotin motives, which can be used to couple streptavidin for further functionalization. As an alternative, here a s…
Promotion of osteogenic cell response using quasicovalent immobilized fibronectin on titanium surfaces: introduction of a novel biomimetic layer system.
Purpose Despite the undeniable potential of cell adhesion molecules such as fibronectin to support osteogenic cell responses and consecutive dental implant healing, the most beneficial mode of application onto titanium implant surfaces still requires investigation. Unspecific fibronectin adsorption on titanium dioxide (TiO2) surfaces can result in low-loading, high-desorption rates and protein–metal interactions with impaired biologic activity. The aim of the present study was to monitor the osteogenic cell responses (cell adhesion, proliferation, and differentiation) specifically to fibronectin biofunctionalized TiO2. Materials and Methods An innovative biomimetic streptavidin-biotin layer…
Probing Protein−Membrane Interactions Using Solid Supported Membranes
International audience; Tethered bilayer lipid membranes have been used as a model system to mimic the interactions between the whey protein β-lactoglobulin and a lipid interface. The approach allowed for a detailed study of the lipid-protein interactions, the results being of possible importance in food and cosmetic applications. For such applications, lipid-protein interactions and the interfacial behavior are vital factors in controlling and manipulating process conditions such as emulsion stabilization and gelification. Lipid composition as well as the structural properties of the protein governed their interactions, which were probed by a combination of surface plasmon spectroscopy, ne…
Protein-lipid interactions at the air-water interface.
International audience; Protein−lipid interactions play an important role in a variety of fields, for example in pharmaceutical research, biosensing, or food science. However, the underlying fundamental processes that govern the interplay of lipids and proteins are often very complex and are therefore studied using model systems. Here, Langmuir monolayers were used to probe the interaction of a model protein with lipid films at the air−water interface. The protein β-lactoglobulin (βlg) is the major component in bovine milk serum, where it coexists with the milk fat globular membrane. During homogenization of milk, βlg adsorbs to the interface of lipid fat globules and stabilizes the oil-in-…