0000000000319955

AUTHOR

Rafael Cantera

Spatio-temporal pattern of cells expressing the clock genes period and timeless and the lineages of period expressing neurons in the embryonic CNS of Drosophila melanogaster.

The initial steps towards the generation of cell diversity in the central nervous system of the fruitfly Drosophila melanogaster take place during early phases of embryonic development when a stereotypic population of neural progenitor cells (neuroblasts and midline precursors) is formed in a precise spatial and temporal pattern, and subsequently expresses a particular sequence of genes. The clarification of the positional, temporal and molecular features of the individual progenitor cells in the nerve cord and brain as well as of their specific types of neuronal and/or glial progeny cells forms an essential basis to understand the mechanisms controlling their development. The present study…

research product

Mutations in spalt cause a severe but reversible neurodegenerative phenotype in the embryonic central nervous system ofDrosophila melanogaster

The gene spalt is expressed in the embryonic central nervous system of Drosophila melanogaster but its function in this tissue is still unknown. To investigate this question, we used a combination of techniques to analyse spalt mutant embryos. Electron microscopy showed that in the absence of Spalt, the central nervous system cells are separated by enlarged extracellular spaces populated by membranous material at 60% of embryonic development. Surprisingly, the central nervous system from slightly older embryos (80% of development) exhibited almost wild-type morphology. An extensive survey by laser confocal microscopy revealed that thespalt mutant central nervous system has abnormal levels o…

research product