0000000000319981

AUTHOR

Simon Caron-huot

showing 2 related works from this author

Subleading Regge limit from a soft anomalous dimension

2018

Wilson lines capture important features of scattering amplitudes, for example soft effects relevant for infrared divergences, and the Regge limit. Beyond the leading power approximation, corrections to the eikonal picture have to be taken into account. In this paper, we study such corrections in a model of massive scattering amplitudes in N = 4 super Yang-Mills, in the planar limit, where the mass is generated through a Higgs mechanism. Using known three-loop analytic expressions for the scattering amplitude, we find that the first power suppressed term has a very simple form, equal to a single power law. We propose that its exponent is governed by the anomalous dimension of a Wilson loop w…

High Energy Physics - TheoryNuclear and High Energy PhysicsWilson loopScalar (mathematics)FOS: Physical sciencesComputer Science::Digital Libraries01 natural sciencesPower lawSupersymmetric Gauge Theorysymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityScattering Amplitudes010306 general physicsMathematical physicsPhysics010308 nuclear & particles physicsEikonal equation16. Peace & justiceWilson ’t Hooft and Polyakov loopsScattering amplitudeHigh Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - Theory (hep-th)Computer Science::Mathematical SoftwareExponentsymbolslcsh:QC770-798Higgs mechanismJournal of High Energy Physics
researchProduct

High-energy evolution to three loops

2018

The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to this equation in planar $\mathcal{N}=4$ super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the three-loop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in cross-section calculations in the planar limit. We compare our result in the linear re…

High Energy Physics - TheoryNuclear and High Energy PhysicsDifferential equationFOS: Physical sciencesYang–Mills theory01 natural sciences114 Physical sciencesperturbative QCDSupersymmetric Gauge TheoryPomeronHARMONIC POLYLOGARITHMSHigh Energy Physics - Phenomenology (hep-ph)supersymmetriaPerturbative QCD0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityGauge theoryLimit (mathematics)Scattering Amplitudes010306 general physicsQCD AMPLITUDESsupersymmetric gauge theoryMathematical physicsPhysicsPOMERONta114010308 nuclear & particles physicsMASS SINGULARITIESPerturbative QCDDIFFERENTIAL-EQUATIONSscattering amplitudesScattering amplitudeHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Supersymmetric gauge theoryresummationYANG-MILLS THEORYlcsh:QC770-798ResummationkvanttikenttäteoriaTO-LEADING ORDERGAUGE-THEORYAPPROXIMATIONJournal of High Energy Physics
researchProduct