0000000000320492

AUTHOR

Piercarlo Bonifacio

showing 2 related works from this author

Gaia -ESO Survey: Analysis of pre-main sequence stellar spectra

2015

This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used in the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategi…

Accuracy and precisionPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstars: pre-main sequenceSurveysfundamental parameters [Stars]Astronomical spectroscopysurveysAngular diameterpre-main sequence [Stars]Astrophysics::Solar and Stellar AstrophysicsSurveydata analysis [Methods]educationSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstronomía y AstrofísicaPhysicseducation.field_of_studygeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Astronomy and AstrophysicsStars: fundamental parameterAstronomy and AstrophysicEffective temperatureopen clusters and associations: generalSurface gravitymethods: data analysisAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsMethods: data analysis; Open clusters and associations: general; Stars: fundamental parameters; Stars: pre-main sequence; Surveys; Astronomy and Astrophysics; Space and Planetary ScienceSpace and Planetary Science[SDU]Sciences of the Universe [physics]open clusters and associations: general; surveys ; methods: data analysisAstrophysics::Earth and Planetary Astrophysicsstars: fundamental parametersMethods: data analysi
researchProduct

ESPRESSO highlights the binary nature of the ultra-metal-poor giant HE 0107-5240

2020

Context. The vast majority of the known stars of ultra low metallicity ([Fe=H] >-4:5) are known to be enhanced in carbon, and belong to the 'low-carbon band' (A(C) = log(C=H) + 12 7:6). It is generally, although not universally, accepted that this peculiar chemical composition reflects the chemical composition of the gas cloud out of which these stars were formed. The first ultra-metalpoor star discovered, HE 0107-5240, is also enhanced in carbon and belongs to the 'low-carbon band'. It has recently been claimed to be a long-period binary, based on radial velocity measurements. It has also been claimed that this binarity may explain its peculiar composition as being due to mass transfer fro…

[PHYS]Physics [physics]Physics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsBinary numberabundances [Galaxy]Astronomy and AstrophysicsAstrophysics01 natural sciencesGalactic haloEspressospectroscopic [Binaries]Space and Planetary Scienceabundances [Stars]0103 physical scienceshalo [Galaxy]Astrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct