0000000000321112

AUTHOR

Miriam Navarrete-miguel

showing 5 related works from this author

Theoretical Study on the Photo-Oxidation and Photoreduction of an Azetidine Derivative as a Model of DNA Repair

2021

Photocycloreversion plays a central role in the study of the repair of DNA lesions, reverting them into the original pyrimidine nucleobases. Particularly, among the proposed mechanisms for the repair of DNA (6-4) photoproducts by photolyases, it has been suggested that it takes place through an intermediate characterized by a four-membered heterocyclic oxetane or azetidine ring, whose opening requires the reduction of the fused nucleobases. The specific role of this electron transfer step and its impact on the ring opening energetics remain to be understood. These processes are studied herein by means of quantum-chemical calculations on the two azetidine stereoisomers obtained from photocyc…

AnionsAcetonitrilesPyrimidineLightPhotochemistryAzetidinePharmaceutical ScienceOrganic chemistryDNA repair010402 general chemistryRing (chemistry)PhotochemistryOxetane01 natural sciencesArticleAnalytical ChemistryNucleobaseElectron transferchemistry.chemical_compoundElectron transferQUIMICA ORGANICAQD241-441AzetidineCationsredox propertiesDrug DiscoveryPhotosensitizerPhysical and Theoretical ChemistryPhotolyasering openingdensity functional theoryphotochemistry010405 organic chemistryRing openingModels Theoreticalelectron transfer0104 chemical scienceschemistryChemistry (miscellaneous)Density functional theoryMolecular MedicineAzetidinesThermodynamicsGasesazetidineOxidation-ReductionRedox propertiesMolecules
researchProduct

Induced Night-Vision by Singlet-Oxygen-Mediated Activation of Rhodopsin

2019

In humans, vision is limited to a small fraction of the whole electromagnetic spectrum. One possible strategy for enhancing vision in deep-red or poor-light conditions consists of recruiting chlorophyll derivatives in the rod photoreceptor cells of the eye, as suggested in the case of some deep-sea fish. Here, we employ all-atom molecular simulations and high-level quantum chemistry calculations to rationalize how chlorin e6 (Ce6), widely used in photodynamic therapy although accompanied by enhanced visual sensitivity, mediates vision in the dark, shining light on a fascinating but largely unknown molecular mechanism. First, we identify persistent interaction sites between Ce6 and the extra…

genetic structuresbiology010405 organic chemistrySinglet oxygenPhotoreceptor proteinRetinal010402 general chemistry01 natural sciencesVisual sensitivityeye diseasesTransmembrane protein0104 chemical scienceschemistry.chemical_compoundchemistryRhodopsinNight visionbiology.proteinBiophysics[CHIM]Chemical SciencesGeneral Materials SciencePhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUSVisual phototransduction
researchProduct

Characterization of Locally Excited and Charge-Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies

2020

[EN] Lapatinib (LAP) is an anticancer drug, which is metabolized to theN- and O-dealkylated products (N-LAP andO-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP,N-LAP andO-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (lambda(max)=550 nm) to ICT states (…

Femtosecond transient absorptionAntineoplastic AgentsSerum Albumin HumanMolecular Dynamics Simulation010402 general chemistryLapatinib01 natural sciencesAnticancer drugsCatalysisFluorescenceQUIMICA ORGANICAComputational chemistrymedicineHumansSpectroscopy010405 organic chemistryChemistryMolecular dynamics simulationsSpectrum AnalysisOrganic Chemistrydigestive oral and skin physiologyCharge (physics)LapatinibGeneral Chemistryequipment and suppliesAnticancer drug0104 chemical sciencesCharacterization (materials science)Excited stateUltrashort pulsehuman activitiesmedicine.drug
researchProduct

Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer.

2018

[EN] Azetidines are interesting compounds in medicine and chemistry as bioactive scaffolds and synthetic intermediates. However, photochemical processes involved in the generation and fate of azetidine-derived radical ions have scarcely been reported. In this context, the photoreduction of this four-membered heterocycle might be relevant in connection with the DNA (6-4) photoproduct obtained from photolyase. Herein, a stable azabipyrimidinic azetidine (AZT(m)), obtained from cycloaddition between thymine and 6-azauracil units, is considered to be an interesting model of the proposed azetidine-like intermediate. Hence, its photoreduction and photo-oxidation are thoroughly investigated throug…

Models MolecularPhotochemistryRadicalAzetidinePyrimidine dimer010402 general chemistryPhotochemistry01 natural sciencesCatalysisPhotoinduced electron transferNucleobaseCyclobutaneElectron transferElectron Transportchemistry.chemical_compoundElectron transferQUIMICA ORGANICAUracilCycloadditionAza CompoundsCycloaddition Reaction010405 organic chemistryOrganic ChemistryGeneral ChemistryRadicalsPhotochemical Processes0104 chemical sciencesThymineDensity functional calculationsPyrimidineschemistryPyrimidine DimersAzetidinesOxidation-ReductionThymineChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Regiochemical memory in the adiabatic photolysis of thymine-derived oxetanes. A combined ultrafast spectroscopic and CASSCF/CASPT2 computational stud…

2020

[EN] The photoinduced cycloreversion of oxetanes has been thoroughly investigated in connection with the photorepair of the well-known DNA (6-4) photoproducts. In the present work, the direct photolysis of the two regioisomers arising from the irradiation of benzophenone (BP) and 1,3-dimethylthymine (DMT), namely the head-to-head (HH-1) and head-to-tail (HT-1) oxetane adducts, has been investigated by combining ultrafast spectroscopy and theoretical multiconfigurational quantum chemistry analysis. Both the experimental and computational results agree with the involvement of an excited triplet exciplex(3)[BPMIDLINE HORIZONTAL ELLIPSISDMT]* for the photoinduced oxetane cleavage to generate(3)…

Materials science010405 organic chemistryPhotodissociationGeneral Physics and Astronomy010402 general chemistryOxetanePhotochemistry01 natural sciencesQuantum chemistry0104 chemical scienceschemistry.chemical_compoundQUIMICA ORGANICAIntersystem crossingchemistryExcited stateUltrafast laser spectroscopyBenzophenonePhysical and Theoretical ChemistryGround statePhysical chemistry chemical physics : PCCP
researchProduct