0000000000321189

AUTHOR

Francesco Laruina

showing 1 related works from this author

Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples

2021

Abstract Predictive models based on radiomics and machine-learning (ML) need large and annotated datasets for training, often difficult to collect. We designed an operative pipeline for model training to exploit data already available to the scientific community. The aim of this work was to explore the capability of radiomic features in predicting tumor histology and stage in patients with non-small cell lung cancer (NSCLC). We analyzed the radiotherapy planning thoracic CT scans of a proprietary sample of 47 subjects (L-RT) and integrated this dataset with a publicly available set of 130 patients from the MAASTRO NSCLC collection (Lung1). We implemented intra- and inter-sample cross-valida…

Lung NeoplasmsComputer scienceBiophysicsGeneral Physics and AstronomySample (statistics)Cross validationMachine learningcomputer.software_genreCross validation; Machine learning; Non-small cell lung cancer; Radiomics; Humans; Lung; Machine Learning; Neoplasm Staging; Carcinoma Non-Small-Cell Lung; Lung NeoplasmsCross-validationSet (abstract data type)Machine LearningNon-small cell lung cancerCarcinoma Non-Small-Cell LungmedicineHumansRadiology Nuclear Medicine and imagingStage (cooking)Lung cancerNon-Small-Cell LungLungNeoplasm StagingSmall dataRadiomicsbusiness.industryCarcinomaGeneral Medicinemedicine.diseaseRandom forestSupport vector machineArtificial intelligencebusinesscomputer
researchProduct