A variational henstock integral characterization of the radon-nikodým property
A characterization of Banach spaces possessing the Radon-Nikodym property is given in terms of finitely additive interval functions. We prove that a Banach space X has the RNP if and only if each X-valued finitely additive interval function possessing absolutely continuous variational measure is a variational Henstock integral of an X-valued function. Due to that characterization several X-valued set functions that are only finitely additive can be represented as integrals.