0000000000322878

AUTHOR

P. Larochelle

ATRAP antihydrogen experiments

Antihydrogen (Hbar) was first produced at CERN in 1996. Over the past decade our ATRAP collaboration has made massive progress toward our goal of producing large numbers of cold Hbar atoms that will be captured in a magnetic gradient trap for precise comparison between the atomic spectra of matter and antimatter. The AD at CERN provides bunches of 3 × 107 low energy Pbars every 100 seconds. We capture and cool to 4 K, 0.1% of these in a cryogenic Penning trap. By stacking many bunches we are able to do experiments with 3 × 105 Pbars. ∼100 e+/sec from a 22Na radioactive source are captured and cooled in the trap, with 5 × 106 available experiments.We have developed 2 ways to make Hbar from t…

research product

Pumped helium system for cooling positron and electron traps to 1.2 K

Abstract Extremely precise tests of fundamental particle symmetries should be possible via laser spectroscopy of trapped antihydrogen ( H ¯ ) atoms. H ¯ atoms that can be trapped must have an energy in temperature units that is below 0.5 K—the energy depth of the deepest magnetic traps that can currently be constructed with high currents and superconducting technology. The number of atoms in a Boltzmann distribution with energies lower than this trap depth depends sharply upon the temperature of the thermal distribution. For example, ten times more atoms with energies low enough to be trapped are in a thermal distribution at a temperature of 1.2 K than for a temperature of 4.2 K. To date, H…

research product

Single-component plasma of photoelectrons

Abstract Ten-nanosecond pulses of photoelectrons liberated by intense UV laser pulses from a thin gold layer are captured into a single-component plasma that is ideally suited to cool antiprotons ( p ¯ ) for antihydrogen ( H ¯ ) production. Up to a billion electrons are accumulated using a series of laser pulses, more than are needed for efficient p ¯ cooling in the large traps now being used for loading p ¯ for H ¯ production. The method is demonstrated within an enclosed vacuum space that is entirely at 4 K, and is thus compatible with the exceptional cryogenic vacuum that is desirable for the long-term storage of antihydrogen. The pitfalls of other electron accumulation methods are entir…

research product

Antihydrogen production within a Penning-Ioffe trap.

Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H[over ] atoms. Observed H[over ] atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on.

research product

Cryogenic Particle Accumulation In ATRAP And The First Antihydrogen Production Within A Magnetic Gradient Trap For Neutral Antimatter

ATRAP has made many important improvements since CERN's Antiproton Decelerator (AD) was restarted in 2006. These include substantial increases in the number of positrons (e+) and antiprotons (Pbars) used to make antihydrogen (Hbar) atoms, a new technique for loading electrons (e−) that are used to cool Pbars and e+, implementation of a completely new, larger and more robust apparatus in our second experimental zone and the inclusion of a quadrupole Ioffe trap intended to trap the coldest Hbar atoms produced. Using this new apparatus we have produced large numbers of Hbar atoms within a Penning trap that is located within this quadrupole Ioffe trap using a new technique which shows promise f…

research product

Antiproton confinement in a Penning-Ioffe trap for antihydrogen.

Antiprotons ((p) over bar) remain confined in a Penning trap, in sufficient numbers to form antihydrogen ((H) over bar) atoms via charge exchange, when the radial field of a quadrupole Ioffe trap is added. This first demonstration with (p) over bar suggests that quadrupole Ioffe traps can be superimposed upon (p) over bar and e(+) traps to attempt the capture of (H) over bar atoms as they form, contrary to conclusions of previous analyses.

research product

Density and geometry of single component plasmas

Abstract The density and geometry of p ¯ and e + plasmas in realistic trapping potentials are required to understand and optimize antihydrogen ( H ¯ ) formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time, using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal, and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and geometries within non-idealized, realistic trapping potentials.

research product