0000000000322943
AUTHOR
Patrick Leidich
Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
Abstract Rutile-type nanorods of SnO2 were obtained in a one-pot hydrothermal synthesis starting from SnCl4·5H2O and HCl in a temperature range between 200 and 240°C. Although the nanorods are polydisperse, the average length of the nanorods could be adjusted from 13 to 65 nm by varying of the reaction temperature. The resulting anisotropic nanocrystals were characterized using powder X-ray diffraction (PXRD), (high resolution-) transmission electron microscopy (HR-TEM), and selected area electron diffraction (SAED). The particle growth proceeds via a dissolution-recrystallization process with soluble [SnCl5(H2O)]− intermediates, as confirmed by PXRD, Raman spectroscopy, and magic angle spi…
Synthesis of single crystalline sub-micron rutile TiO2 rods using hydrothermal treatment in acidic media
Size engineered rutile sub-micron rods were obtained from nanostructured titania under acidic conditions. The synthesis was performed by hydrothermal treatment starting from TiO2-P25 and HCl. The synthesis proceeds in less than two hours and can be up-scaled to several grams in a one-pot reaction by increasing the reaction time. The product is single-phase, and the particles are single crystalline as confirmed by electron diffraction and powder X-ray diffraction analysis. The length of the particles can be varied over a wide range from 100 nm to 1.3 μm by changing the acid concentration. Particle growth is proposed to proceed by a dissolution-recrystallization process via soluble [TiCl6]2− …
Tetragonal tungsten bronzes Nb8−xW9+xO47−δ: optimization strategies and transport properties of a new n-type thermoelectric oxide
Engineering of nanoscaled structures may help controlling the electrical and thermal transport in solids, in particular for thermoelectric applications that require the combination of low thermal conductivity and low electrical resistivity. The tetragonal tungsten bronzes Nb8−xW9+xO47 (TTB) allow a continuous variation of the charge carrier concentration while fulfilling at the same time the concept of a “phonon-glass electron-crystal” through a layered nanostructure defined by intrinsic crystallographic shear planes. The thermoelectric properties of the tetragonal tungsten bronzes Nb8−xW9+xO47−δ (0 < x < 2) were studied in the temperature range from 373 to 973 K. Structural defects and the…
On the True Indium Content of In-Filled Skutterudites
The incongruently melting single-filled skutterudite InxCo4Sb12 is known as a promising bulk thermoelectric material. However, the products of current bulk syntheses contain always impurities of InSb, Sb, CoSb, or CoSb2, which prevent an unbiased determination of its thermoelectric properties. We report a new two-step synthesis of high-purity InxCo4Sb12 with nominal compositions x = 0.12, 0.15, 0.18, and 0.20 that separates the kieftite (CoSb3) formation from the topotactic filler insertion. This approach allows conducting the reactions at lower temperatures with shorter reaction times and circumventing the formation of impurity phases. The synthesis can be extended to other filled skutteru…