0000000000322971

AUTHOR

Daniel Peña

showing 2 related works from this author

Statistical inference and Monte Carlo algorithms

1996

This review article looks at a small part of the picture of the interrelationship between statistical theory and computational algorithms, especially the Gibbs sampler and the Accept-Reject algorithm. We pay particular attention to how the methodologies affect and complement each other.

Statistics and ProbabilityDecision theoryMonte Carlo methodMarkov chain Monte CarloStatistics::ComputationComplement (complexity)symbols.namesakeStatistical inferencesymbolsMonte Carlo method in statistical physicsStatistics Probability and UncertaintyStatistical theoryAlgorithmGibbs samplingMathematicsTest
researchProduct

Intrinsic credible regions: An objective Bayesian approach to interval estimation

2005

This paper definesintrinsic credible regions, a method to produce objective Bayesian credible regions which only depends on the assumed model and the available data.Lowest posterior loss (LPL) regions are defined as Bayesian credible regions which contain values of minimum posterior expected loss: they depend both on the loss function and on the prior specification. An invariant, information-theory based loss function, theintrinsic discrepancy is argued to be appropriate for scientific communication. Intrinsic credible regions are the lowest posterior loss regions with respect to the intrinsic discrepancy loss and the appropriate reference prior. The proposed procedure is completely general…

Statistics and ProbabilityInterval estimationBayesian probabilityConfidence intervalsymbols.namesakeFrequentist inferenceStatisticssymbolsCredible intervalApplied mathematicsPoint estimationStatistics Probability and UncertaintyFisher informationExpected lossMathematicsTEST
researchProduct