0000000000323235
AUTHOR
Yohann Scribano
Rotational excitation of mono- and doubly-deuterated water by hydrogen molecules
Rate coefficients for rotational transitions in HDO and D2O induced by H2 collisions below 300 K are presented. Calculations have been performed at the close-coupling and coupledstates levels with the deuterated variants of the H2O–H2 interaction potential of Valiron et al. The HDO–H2 and D2O–H2 rate coefficients are compared to the corresponding rate coefficients for HDO–He and H2O–H2, respectively. Significant differences are observed. In particular the new HDO rate coefficients are found to be significantly larger (by up to three orders of magnitude) than the corresponding HDO–He rate coefficients. The impact of the new HDO rate coefficients is examined with the help of non-LTE radiative…
Intermolecular potential and rovibrational states of the H2O–D2 complex
International audience; A five-dimensional intermolecular potential for H2O-D-2 was obtained from the full nine-dimensional ab initio potential surface of Valiron et al. [P. Valiron, M. Wernli, A. Faure, L. Wiesenfeld, C. Rist, S. Kedzuch, J. Noga, J. Chem. Phys. 129 (2008) 134306] by averaging over the ground state vibrational wave functions of H2O and D-2. On this five-dimensional potential with a well depth D-e of 232.12 cm (1) we calculated the bound rovibrational levels of H2O-D-2 for total angular momentum J = 0-3. The method used to compute the rovibrational levels is similar to a scattering approach-it involves a basis of coupled free rotor wave functions for the hindered internal r…
Quantum dynamics study of rate constant for a reactive collision of astrophysical interest : the D+ + H2 reaction
For chemistry networks describing the reactions for the early universe and especially for accuratemodels of the enrichment of deuterated molecules observed, we need to know in detail manystate-to-state rate coeffcients. Today most of the rate coeffcients of interesting reactions are stillunknown or with a poor accuracy. For example, the uncertainty about the rate coeffcient for thereaction directly affects model predictions for the HD abundance and thereby the cooling rate ofthe primordial gas. It is therefore of astrophysical importance to determine an accurate value ofthese rates, and helping to understand the cooling requires a complete set of the state-to-state ratecoefficients as well …
Communication: Rotational excitation of interstellar heavy water by hydrogen molecules
Cross sections and rate coefficients for low lying rotational transitions in D(2)O induced by para-H(2) collisions are presented for the first time. Calculations have been performed at the close-coupling level with the deuterated variant of the H(2)O-H(2) interaction potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)]. Rate coefficients are presented for temperatures between 1 and 30 K and are compared to the corresponding rate coefficients for H(2)O. Significant differences caused by the isotopic substitution are observed and are attributed to both kinematics and intramolecular geometry effects. Astrophysical implications are briefly discussed in view of the very recent detecti…
Fast vibrational configuration interaction using generalized curvilinear coordinates and self-consistent basis
In this paper, we couple a numerical kinetic-energy operator approach to the direct-vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) method for the calculation of vibrational anharmonic frequencies. By combining this with fast-VSCF, an efficient direct evaluation of the ab initio potential-energy surface (PES), we introduce a general formalism for the computation of vibrational bound states of molecular systems exhibiting large-amplitude motion such as methyl-group torsion. We validate our approach on an analytical two-dimensional model and apply it to the methanol molecule. We show that curvilinear coordinates lead to a significant improvement in the VSC…
Vibrations of a single adsorbed organic molecule: anharmonicity matters!
Vibrational spectroscopy is a powerful tool to identify molecules and to characterise their chemical state. Inelastic electron tunnelling spectroscopy (IETS) combined with scanning tunnelling microscopy (STM) allows the application of vibrational analysis to a single molecule. Up to now, IETS was restricted to small species due to the complexity of vibration spectra for larger molecules. We extend the horizon of IETS for both experiment and theory by measuring the STM-IETS spectra of mercaptopyridine adsorbed on the (111) surface of gold and comparing it to theoretical spectra. Such complex spectra with more than 20 lines can be reliably determined and computed leading to completely new ins…
Transition state theory thermal rate constants and RRKM-based branching ratios for the N((2)D) + CH(4) reaction based on multi-state and multi-reference ab initio calculations of interest for the Titan's chemistry.
International audience; Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N(2D) + CH4 reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 +/- 0.84 kJ mol-1…
Analyzing observations of molecules in the ISM: Theoretical and experimental studies of energy transfer
Our laboratories have recently calculated a set of collision coefficients characterizing the efficiency of energy transfer between helium and/or hydrogen and a large variety of interstellar molecules. We have considered with molecules ranging from light hydrides, observed by the Herschel Space Observatory, to medium size molecules, observed by mm antennas, to heavy complex organic molecules, observed also in the cm range. We present a review of recent theoretical results obtained in our laboratories, for various kinds of commonly observed molecules.
Rotational quenching of monodeuterated water by hydrogen molecules
Cross sections and rate coefficients for low lying rotational transitions in HDO induced by para and ortho-H(2) collisions are presented for the first time. Calculations have been performed at the close-coupling and coupled-states levels with the deuterated variant of the H(2)O-H(2) interaction potential of Valiron et al. [J. Chem. Phys., 2008, 129, 134306]. Rate coefficients are presented for temperatures between 5 and 100 K and are compared to the corresponding rates for H(2)O and D(2)O. Significant differences caused by the isotopic substitution, in particular the C(2v) symmetry breaking, are observed. Finally, our rates are found to be significantly larger (by up to three orders of magn…