0000000000323237

AUTHOR

Ephraim Prantl

Competitive NH···Ru/Fe Hydrogen Bonding in Ferrocenyl Ruthenocenyl Tosyl Hydrazone

A strong nonclassical NH···Fe intramolecular hydrogen bond (IHB) is present in the literature-known diferrocenyl tosyl hydrazone (1). Here, we confirm by NMR and IR spectroscopy as well as by XRD methods that an analogous NH···Ru IHB is present in the heavier homologue diruthenocenyl tosyl hydrazone (2). The NH···Ru IHB in 2 is stronger than the NH···Fe IHB in 1 by 6 kJ mol–1, as determined by IR spectroscopy. Further, we probed the E/Z isomer directing abilities of NH···M IHBs in the synthesis of the mixed metallocenyl compound ferrocenyl ruthenocenyl tosyl hydrazone (3). 3 is obtained as a mixture of the Z and E isomers (3a,b) with NH···Ru and NH···Fe IHBs, respectively. At 111 °C, 3a is …

research product

Exploration of the Solid-State Sorption Properties of Shape-Persistent Macrocyclic Nanocarbons as Bulk Materials and Small Aggregates.

Porous molecular materials combine benefits such as convenient processability and the possibility for atom-precise structural fine-tuning which makes them remarkable candidates for specialty applications in the areas of gas separation, catalysis, and sensing. In order to realize the full potential of these materials and guide future molecular design, knowledge of the transition from molecular properties into materials behavior is essential. In this work, the class of compounds termed cycloparaphenylenes (CPPs)-shape-persistent macrocycles with built-in cavities and radially oriented π-systems-was selected as a conceptually simple class of intrinsically porous nanocarbons to serve as a platf…

research product

Microporous Triptycene‐Based Affinity Materials on Quartz Crystal Microbalances for Tracing of Illicit Compounds

Triptycene-based organic molecules of intrinsic microporosity (OMIMs) with extended functionalized π-surfaces are excellent materials for gas sorption and separation. In this study, the affinities of triptycene-based OMIM affinity materials on 195 MHz high-fundamental-frequency quartz crystal microbalances (HFF-QCMs) for hazardous and illicit compounds such as piperonal and (-)-norephedrine were determined. Both new and existing porous triptycene-based affinity materials were investigated, resulting in very high sensitivities and selectivities that could be applied for sensing purposes. Remarkable results were found for safrole - a starting material for illicit compounds such as ecstasy. A …

research product

CCDC 1426094: Experimental Crystal Structure Determination

Related Article: Philipp Veit, Ephraim Prantl, Christoph Förster, Katja Heinze|2016|Organometallics|35|249|doi:10.1021/acs.organomet.5b00963

research product

CCDC 1426095: Experimental Crystal Structure Determination

Related Article: Philipp Veit, Ephraim Prantl, Christoph Förster, Katja Heinze|2016|Organometallics|35|249|doi:10.1021/acs.organomet.5b00963

research product

CCDC 1897052: Experimental Crystal Structure Determination

Related Article: Ephraim Prantl, Bernd Kohl, Dimitrij Ryvlin, Philipp Biegger, Hubert Wadepohl, Frank Rominger, Uwe H. F. Bunz, Michael Mastalerz, Siegfried R. Waldvogel|2019|ChemPlusChem|84|1239|doi:10.1002/cplu.201900189

research product

CCDC 1897051: Experimental Crystal Structure Determination

Related Article: Ephraim Prantl, Bernd Kohl, Dimitrij Ryvlin, Philipp Biegger, Hubert Wadepohl, Frank Rominger, Uwe H. F. Bunz, Michael Mastalerz, Siegfried R. Waldvogel|2019|ChemPlusChem|84|1239|doi:10.1002/cplu.201900189

research product