0000000000323321

AUTHOR

Barbara Schroers

Abstract A110: Mutant MHC class II epitopes drive therapeutic immune responses to cancer

Abstract Mutations are regarded as ideal targets for cancer immunotherapy. As neoepitopes with strict lack of expression in any healthy tissue, they are expected to be safe and could bypass the central tolerance mechanisms. Recent advances in nucleic acid sequencing technologies have revolutionized the field of genomics, allowing the readily targeting of mutated neoantigens for personalized cancer vaccination. We demonstrated in three independent murine tumor models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that unexpectedly the immunogenic mutanome is pre-dominantly recognized by CD4+ T cells. RNA vaccination with such MHC class II restricted immuno…

research product

Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening of virus isolates

AbstractDue to the widespread of the COVID-19 pandemic, the SARS-CoV-2 genome is evolving in diverse human populations. Several studies already reported different strains and an increase in the mutation rate. Particularly, mutations in SARS-CoV-2 spike-glycoprotein are of great interest as it mediates infection in human and recently approved mRNA vaccines are designed to induce immune responses against it.We analyzed 146,917 SARS-CoV-2 genome assemblies and 2,393 NGS datasets from GISAID, NCBI Virus and NCBI SRA archives focusing on non-synonymous mutations in the spike protein.Only around 13.8% of the samples contained the wild-type spike protein with no variation from the reference. Among…

research product

Abstract CT022: IVAC® MUTANOME - A first-in-human phase I clinical trial targeting individual mutant neoantigens for the treatment of melanoma

Abstract One of the hallmarks of cancer is the inherent instability of the genome leading to multiple genomic alterations and epigenetic changes that ultimately drive carcinogenesis. These processes lead to a unique molecular profile of every given tumor and to substantial intratumoral heterogeneity of cancer tissues. Recently, a series of independent reports revealed that pre-formed neoantigen specific T-cell responses are of crucial relevance for the clinical efficacy of immune checkpoint inhibitors. However, spontaneous immune recognition of neoantigens seems to be a rare event with only less than 1% of mutations inducing a T-cell response in the tumor-bearing patient. Accordingly, only …

research product