0000000000323347
AUTHOR
Joachim Hemberger
Quantum paraelectric and induced ferroelectric states in
Nominally pure has been studied by dielectric spectroscopy using small (linear regime) as well as large electrical fields (non-linear regime) up to . In addition measurements of the specific heat and its field-dependent contribution have been carried out. The field dependence of the dielectric constant and the specific heat can be well described by the transverse Ising Hamiltonian including tunnelling and external field terms. It gives evidence for the existence of polar clusters at low temperatures which are supposed to be associated with the quantum paraelectric state below in accord with recent free-energy calculations. The low-field third-harmonic susceptibility which measures the polar…
Static freezing transition at a finite temperature in a quasi-one-dimensional deuteron glass.
The dipolar freezing process of a quasi-one-dimensional betaine deuteron glass was studied using linear and nonlinear dielectric spectroscopy. The linear response as measured for frequencies $5\mathrm{mHz}l\ensuremath{\nu}l200\mathrm{MHz}$ was analyzed using the recently invented $\ensuremath{\delta}$ plot, providing evidence for a static freezing transition near 30 K. Measurements of the ergodic to nonergodic transition as well as of the incipient divergence of the nonlinear susceptibility yield independent confirmation of this quasistatic freezing transition temperature. The critical exponent describing the nonlinear behavior is found to be $\ensuremath{\gamma}\phantom{\rule{0ex}{0ex}}=\p…