0000000000323375

AUTHOR

Hazel M. Davey

showing 3 related works from this author

Surviving the heat: heterogeneity of response inSaccharomyces cerevisiaeprovides insight into thermal damage to the membrane

2015

Environmental heat stress impacts on the physiology and viability of microbial cells with concomitant implications for microbial activity and diversity. Previously, it has been demonstrated that gradual heating of Saccharomyces cerevisiae induces a degree of thermal resistance, whereas a heat shock results in a high level of cell death. Here, we show that the impact of exogenous nutrients on acquisition of thermal resistance differs between strains. Using single-cell methods, we demonstrate the extent of heterogeneity of the heat-stress response within populations of yeast cells and the presence of subpopulations that are reversibly damaged by heat stress. Such cells represent potential for…

0303 health sciencesProgrammed cell deathmedicine.diagnostic_testbiology030306 microbiologyEcologyThermal resistanceCellSaccharomyces cerevisiaeHomeoviscous adaptationbiology.organism_classification7. Clean energyMicrobiologyYeastFlow cytometryCell biology03 medical and health sciencesmedicine.anatomical_structure13. Climate actionmedicineAdaptationEcology Evolution Behavior and Systematics030304 developmental biologyEnvironmental Microbiology
researchProduct

Estimation of Microbial Viability Using Flow Cytometry.

2020

For microorganisms in particular, viability is a term that is difficult to define and a state consequently difficult to measure. The traditional (and gold standard) usage equates viability and culturability (i.e., the ability to multiply) but the process of determining culturability is often too slow. Flow cytometry provides the opportunity to make rapid and quantitative measurements of dye uptake in large numbers of cells and we can therefore exploit the flow cytometric approach to evaluate so-called viability stains and to develop protocols for more routine assessments of microbial viability. This article provides a commentary and several protocols have been included to ensure that users …

HistologyMicrobial ViabilityMicrobial Viabilitymedicine.diagnostic_testStaining and LabelingComputer scienceGeneral MedicineFlow CytometryFluoresceinsBiochemistryFluorescenceFlow cytometryMedical Laboratory TechnologyDye uptakeCalibrationmedicineBiochemical engineeringFluorescent DyesCurrent protocols in cytometryLITERATURE CITED
researchProduct

Erratum

2016

Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Ab…

0301 basic medicineSettore BIO/06biologyCell Biology[SDV.BC]Life Sciences [q-bio]/Cellular Biologybiology.organism_classificationCell biologyInterpretation (model theory)03 medical and health sciencesArama030104 developmental biologyMolecular BiologyHumanitiesComputingMilieux_MISCELLANEOUS
researchProduct