0000000000323611
AUTHOR
Waclaw Urbanczyk
Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre
International audience; A simple experimental technique to evaluate the second zero dispersion wavelength of very small core microstrutured fibres is described. Based on the effect of soliton self-frequency shift and its subsequent compensation in the vicinity of the second zero dispersion. the proposed method is applied to both standard and suspended core microstructured fibres by simply measuring the frequency stabilised soliton spectrum, avoiding any calculation and knowledge of any experimental parameters.
Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber
International audience; We present an experimental analysis of polarization and intermodal noise-seeded parametric amplification, in which dispersion is phase matched by group velocity mismatch between either polarization or spatial modes in birefringent holey fiber with elliptical core composed of a triple defect. By injecting quasi-CW intense linearly polarized pump pulses either parallel or at 45 degrees with respect to the fiber polarization axes, we observed the simultaneous generation of polarization or intermodal modulation instability sidebands. Furthermore, by shifting the pump wavelength from 532 to 625 nm, we observed a shift of polarization sidebands from 3 to 8 THz, whereas int…
Observation of Frequency Tunable Cross-Phase Modulation Instabilities in Highly Birefringent Photonic Crystal Fiber
We observed frequency tunable modulation instability owing to cross-phase modulation in normal group velocity dispersion regime of a birefringent holey fiber. Sideband shifts were 3-8 THz for polarization and 30-60 THz for modal instabilities.
Nonlinear femtosecond pulse propagation in all-solid photonic bandgap fiber
Nonlinear femtosecond pulse propagation in all-solid photonic bandgap fiber is investigated experimentally and numerically for both the photonic bandgap guiding in the central silica core and the total internal reflection in germanium doped inclusions.
Grating-assisted third-harmonic generation in photonic crystal fibers using a pulse pump
We demonstrate that quasi-phase-matching of the third-harmonic generation process can be obtained for a pulse pump in the photonic crystal fiber with a refractive-index grating. Conversion efficiency is calculated numerically using a system of coupled generalized nonlinear Schrodinger equations. We propose a special design of the microstructured fiber for the third-harmonic generation and analyze different phenomena limiting the maximum efficiency for short (femtosecond) and long (picosecond) pump pulses. Moreover, we show that a certain level of a group-velocity mismatch between the pump and the third harmonic can increase the maximum efficiency in the long pulse regime.
Nonlinear frequency conversion in a birefringent microstructured fiber tuned by externally applied hydrostatic pressure.
We studied vector frequency conversion in externally tuned microstructured fibers for applications as a novel, nonlinear fiber-optic sensor. We investigated both experimentally and numerically a possibility of shifting vector and scalar modulation instability gain bands by pressure-induced changes in the linear properties of a microstructured fiber. Our results show that polarization-dependent vector nonlinear processes sensitive to variation of fiber group velocity difference (group birefringence) exhibit a clear advantage for pressure-sensing applications compared with scalar nonlinear processes only sensitive to group velocity dispersion changes. Analytical predictions and numerical simu…
Nonlinear mode coupling in a birefringent microstructured fiber tuned by externally applied hydrostatic pressure
We studied the effect of power coupling between two linearly polarized modes, which occurs during nonlinear propagation in an externally tuned birefringent microstructured fiber. We investigated both experimentally and numerically the possibility of measuring hydrostatic pressure by tracking the nonlinear power coupling between the fiber polarization modes. We analyzed the impact of the fiber length exposed to pressure and the input polarization state on the coupling efficiency. We also revealed that the observation of nonlinear power coupling between the polarization modes is limited by linear coupling occurring in the leadthroughs to the pressure chamber. Moreover, we demonstrated that th…
Managing Group and Phase Birefringence for Nonlinear Optics in Photonic Crystal Fibers
A novel design of birefringent photonic crystal fibers with stress applying parts permits to manage the wavelength dependence of group and phase birefringence. Applications to vector frequency conversion and soliton polarization instabilities are discussed.
Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber
Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber is experimentally and numerically investigated. Guiding light in such fiber occurs via two mechanisms: photonic bandgap in the central silica core or total internal reflection in the germanium doped inclusions. By properly combining spectral filtering, dispersion tailoring and pump coupling into the fiber modes, we experimentally demonstrate efficient supercontinuum generation with controllable spectral bandwidth.