Stabilization of Polar Step Edges on Calcite (10.4) by the Adsorption of Congo Red
In this work, we present the stabilization of polar step edges along the [010] direction of calcite (10.4) by the presence of a water-soluble organic molecule, namely Congo Red. While characteristic etch pits are observed on the surface in the absence of the additive, no etch pits can be found in the presence of the additive. Using atomic force microscopy, we can directly follow the restructuring of the surface. Upon addition of Congo Red, the charge-neutral step edges confining the characteristic etch pits vanish, while polar step edges along the [010] direction appear on the surface, which are entirely decorated by well-ordered molecular islands of the additive. After the restructuring ha…
How deprotonation changes molecular self-assembly – an AFM study in liquid environment
We study the influence of Alizarin Red S deprotonation on molecular self-assembly at the solid-liquid interface of the natural cleavage plane of calcite immersed in aqueous solution. To elucidate the adsorption details, we perform pH dependent high-resolution atomic force microscopy measurements. When Alizarin Red S is deposited onto calcite(10.4) in a liquid environment at an acidic pH of 5, weakly bound, ordered islands with a (3 x 3) superstructure are observed. A sharp structural transition is revealed when increasing the pH above 8. Above this pH, stable needle-like structures oriented along the [01.0] direction form on the surface. Comparing these results with potentiometric titration…
Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition
We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated …
Molecular Self-Assembly Versus Surface Restructuring During Calcite Dissolution.
Organic additives are known to alter the mineral-water interface in various ways. On the one hand, organic molecules can self assemble into ordered structures wetting the surface. On the other hand, their presence can affect the interfacial morphology, referred to as surface restructuring. Here, we investigate the impact, of a class of calcium-complexing azo dyes on the dissolution of calcite (10.4) using high-resolution atomic force microscopy operated in aqueous solution, with a focus on the two constitutional isomers Eriochrome Black T and Eriochrome Black A. A very pronounced surface restructuring is observed in the presence of the dye solution, irrespective of the specific dye used and…
Structure-Dependent Dissolution and Restructuring of Calcite Surfaces by Organophosphonates
Organophosphonates are well-known to strongly interact with the surfaces of various minerals, such as brucite, gypsum, and barite. In this work, we study the influence of six systematically varied organophosphonate molecules (tetraphosphonates and diphosphonates) on the dissolution process of the (10.4) surface of calcite. In order to pursue a systematic study, we have selected organophosphonates that exhibit similar structural features, but also systematic architectural differences. The effect of this class of additives on the dissolution process of the calcite (10.4) surface is evaluated using in situ dynamic atomic force microscopy. For all of the six organophosphonate derivatives, we ob…
Where Is the Most Hydrophobic Region? Benzopurpurine Self-Assembly at the Calcite–Water Interface
Control of molecular self-assembly at solid–liquid interfaces is challenging due to the complex interplay between molecule–molecule, molecule–surface, molecule–solvent, surface–solvent, and solvent–solvent interactions. Here, we use in-situ dynamic atomic force microscopy to study the self-assembly of Benzopurpurine 4B into oblong islands with a highly ordered inner structure yet incommensurate with the underlying calcite (10.4) surface. Molecular dynamics and free energy calculations provide insights by showing that Benzopurpurine 4B molecules do not anchor to the surface directly but instead assemble on top of the second hydration layer. This seemingly peculiar behavior was then rationali…