0000000000323708

AUTHOR

E. Pawelec

showing 12 related works from this author

Molecular ND Band Spectroscopy in the Divertor Region of Nitrogen Seeded JET Discharges

2018

In this contribution we present OES measurements in the JET tokamak of the deuterated NH (ND) radical and the correlation between results of those experiments and measurement of ammonia production. The observation region covers most of the divertor and its outer throat. Measurements are performed in different magnetic configurations. The results include temporal and spatial dependence of the molecular emission intensity and study of the emission band shape (vibrational and rotational temperatures) during different JET pulses, with or without nitrogen seeding. Results are a step towards the understanding of nitrogen-containing molecule creation and destruction in the divertor plasma. For com…

HistoryJet (fluid)Materials scienceTokamakDivertorAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNitrogenFusion Plasma and Space Physics010305 fluids & plasmasComputer Science ApplicationsEducationlaw.inventionAmmonia productionFusion plasma och rymdfysikchemistryDeuteriumlaw0103 physical sciencesSeeding0210 nano-technologySpectroscopy
researchProduct

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

2017

We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…

Astrophysical plasmasTokamakradio-frequency heatingCyclotronJoint European TorusPlasma heatingGeneral Physics and AstronomyFREQUENCY114 Physical sciences01 natural sciences7. Clean energyMagnetically confined plasmas010305 fluids & plasmaslaw.inventionIonPHYSICSPhysics and Astronomy (all)FUSIONMODE CONVERSIONlawPhysics::Plasma Physics0103 physical sciencesDielectric heating010306 general physicsPhysics[PHYS]Physics [physics]ta114Solar flare:Física [Àrees temàtiques de la UPC]Plasma dynamicsmulti-ion plasmasSettore FIS/01 - Fisica SperimentaleMagnetic confinement fusionPlasmaHE-3-RICH SOLAR-FLARESTècniques de plasmaJETCYCLOTRON RANGETOKAMAKPhysics::Space PhysicsAtomic physicsHE-3-RICH SOLAR-FLARES; MODE CONVERSION; CYCLOTRON RANGE; FUSION; JET; FREQUENCY; TOKAMAK; PHYSICS
researchProduct

Novel method for determination of tritium depth profiles in metallic samples

2019

Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evo…

inorganic chemicalsfusionNuclear and High Energy PhysicsMaterials scienceNuclear engineeringchemistry.chemical_elementheliumBlanket114 Physical sciences01 natural sciences010305 fluids & plasmasblanketMetalirradiated berylliumjet0103 physical sciencespolycyclic compounds010306 general physicsHeliumbreeding blanketJet (fluid)Fusiontritiumbehaviororganic chemicalshydrogen diffusiontemperatureiter-like-wallFusion powerfirst wallberylliumCondensed Matter Physicschemistryvisual_arttransportcardiovascular systemvisual_art.visual_art_mediumdepth profileTritiumBerylliumNuclear Fusion
researchProduct

Atomic transition probabilities of F I spectral lines from3s−3pand3p−3dtransition arrays

1999

We have measured the relative transition probabilities of about $100 3s\ensuremath{-}3p$ and $3p\ensuremath{-}3d$ lines of neutral fluorine in the visible and near-infrared spectrum with a wall-stabilized high-current arc, which is operated under conditions very close to partial local thermodynamic equilibrium. The set of measured lines includes about 40 intersystem transitions. Our data have been placed on an absolute scale by normalizing several strong transitions to the results of the OPACITY Project calculations, which are expected to be quite accurate for such transitions. We estimate that the uncertainties of our absolute transition probability values are in the \ifmmode\pm\else\textp…

PhysicsRelative scaleOpacityThermodynamic equilibriumSpectrum (functional analysis)Range (statistics)Atomic physicsCoupling (probability)Absolute scaleAtomic and Molecular Physics and OpticsSpectral linePhysical Review A
researchProduct

Modeling And Measurements Of The Arc Plasma In A Mixture Of Gases

2006

Radial distributions of Ar mass fractions and temperatures in plasmas produced in a wall-stabilized arc have been calculated. Modeling have been performed for many different mixtures of Ar+N2 and three different arc currents. The obtained results show that the radial distributions of Ar mass fractions strongly depend on the chemical composition of the plasma. In plasmas containing large amount of Ar the distributions have local minima at the arc axis (in high temperature plasma regions), whereas in plasmas consisting mainly of nitrogen the distributions reveal maxima on the discharge axis. Those features seem to be connected with the dissociation of the nitrogen.

ArgonPlasma cleaningchemistry.chemical_elementPlasmaDissociation (chemistry)chemistryPhysics::Plasma PhysicsPhysics::Space PhysicsAstrophysics::Solar and Stellar AstrophysicsPlasma diagnosticsElectric currentAtomic physicsChemical compositionMass fractionAIP Conference Proceedings
researchProduct

Measuring the isotope effect on the gross beryllium erosion in JET

2022

Abstract The isotope effect, hydrogen (H) versus deuterium (D), on the gross beryllium (Be) erosion yield has been measured in ohmic limiter plasmas in JET tokamak by spectroscopic means. A simplified method to extract the effective sputtering yield from the quotient of the radiances of the D α or D γ and the Be II lines at 527 nm was applied. A clear isotope effect has been found, the erosion yield of D being about a factor of 2 larger compared to H in the whole explored plasma density range. This is in agreement with physical sputtering data obtained with H+ and D+ ion beams and also with material surface computer simulations. The already published contribution of chemically assisted phys…

Nuclear and High Energy PhysicsspectroscopyJETsputteringddc:620Condensed Matter Physicsberylliumerosionisotopelimiter
researchProduct

Comparison of the structure of the plasma-facing surface and tritium accumulation in beryllium tiles from JET ILW campaigns 2011-2012 and 2013-2014

2019

In this study, beryllium tiles from Joint European Torus (JET) vacuum vessel wall were analysed and compared regarding their position in the vacuum vessel and differences in the exploitation conditions during two campaigns of ITER-Like-Wall (ILW) in 2011-2012 (ILW1) and 2013-2014 (ILW2) Tritium content in beryllium samples were assessed. Two methods were used to measure tritium content in the samples - dissolution under controlled conditions and tritium thermal desorption. Prior to desorption and dissolution experiments, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to study structure and chemical composition of plasma-facing-surfaces of the beryllium sampl…

Fuel retentionPhysics::Medical Physics01 natural sciencesQuantitative Biology::Cell Behavior010305 fluids & plasmasiter-like walljoint european torusRETENTION010302 applied physicsJet (fluid)tritiumPhysicsMechanicsSurface (topology)Fusion Plasma and Space Physicslcsh:TK9001-9401surgical procedures operativecardiovascular systemJoint European TorusTritiumBerylliumBerylliumNuclear and High Energy PhysicsretentionTechnology and Engineeringanimal structuresMaterials scienceQuantitative Biology::Tissues and OrgansMaterials Science (miscellaneous)Joint European Toruschemistry.chemical_elementTritium114 Physical sciencesGeneral Relativity and Quantum CosmologyFusion plasma och rymdfysik0103 physical sciencesddc:530ITER-LIKE-WALLITER-like walltechnology industry and agriculturePlasmaiter-like-wallberylliumTRANSPORTfuel retentionbody regionsNuclear Energy and Engineeringchemistrytransportlcsh:Nuclear engineering. Atomic power
researchProduct

The power threshold of H-mode access in mixed hydrogen–tritium and pure tritium plasmas at JET with ITER-like wall

2022

The heating power to access the high confinement mode (H-mode), PLH, scales approximately inversely with the isotope mass of the main ion plasma species as found in (protonic) hydrogen, deuterium and tritium plasmas in many fusion facilities over the last decades. In first dedicated L–H transition experiments at the Joint European Torus (JET) tokamak facility with the ITER-like wall (ILW), the power threshold, PLH, was studied systematically in plasmas of pure tritium and hydrogen–tritium mixtures at a magnetic field of 1.8 T and a plasma current of 1.7 MA in order to assess whether this scaling still holds in a metallic wall device. The measured power thresholds, PLH, in Ohmically heated t…

Nuclear and High Energy Physics:Física::Física de fluids [Àrees temàtiques de la UPC]IsòtopsL–H transitionTritium plasmasPaper ; magnetic confinement fusion ; fusion plasmas ; L-H transition ; JET tokamak ; tritium plasmasTritiumCondensed Matter Physicsjet tokamakddc:magnetic confinement fusionJET tokamakPhysics::Plasma PhysicsFusion plasmastritium plasmasPhysics::Space PhysicsMagnetic confinement fusionPhysics::Accelerator Physicsfusion plasmasTokamaksl-h transitionNuclear Fusion
researchProduct

Study of uniformity of plasmas produced in a wall-stabilized arc

2003

In this contribution the plasma of an arc discharge in a mixture of helium and argon is studied. The gas mixture is introduced uniformly along the arc column between each of the stabilizing plates. From the measured lateral distribution of radiation (HeI, HI, ArI, ArII, NI, FI line intensity and width measurements), after Abel inversion, the radial temperature distributions were obtained at various positions of the arc column. Beside the expected radial temperature gradients, a distinct temperature gradient along the arc column was found.

ArgonMaterials sciencechemistry.chemical_elementPlasmaRadiationCondensed Matter PhysicsElectric arcTemperature gradientPlasma arc weldingchemistryPlasma diagnosticsAtomic physicsAstrophysics::Galaxy AstrophysicsHeliumContributions to Plasma Physics
researchProduct

Simulated effects of W dust ablation and deposition on the pedestal edge in JET D and DT experiments

2022

Abstract A modelling analysis is performed on JET D and DT discharges, where W dust influx across the separatrix, in the pedestal edge region may affect L–H–L mode transition. The experimental basis of the proposed approach stems from the observation that transient impurity events (TIEs) are often associated with the presence of a shower of particles seen in the camera images and with strong optical emission. If the localised source of radiation is a number of heated or ablated large dust particles, then the questions addressed here are: how far will the ablated dust material penetrate and what effect will this have on the edge of the pedestal in relevant JET D and in a high fusion yield D–…

Nuclear and High Energy PhysicsseparatrixpenetrationW dustCondensed Matter PhysicsablationH mode pedestalNuclear Fusion
researchProduct

Recent progress in L-H transition studies at JET: tritium, helium, hydrogen and deuterium

2022

Abstract We present an overview of results from a series of L–H transition experiments undertaken at JET since the installation of the ITER-like-wall (JET-ILW), with beryllium wall tiles and a tungsten divertor. Tritium, helium and deuterium plasmas have been investigated. Initial results in tritium show ohmic L–H transitions at low density and the power threshold for the L–H transition (P LH) is lower in tritium plasmas than in deuterium ones at low densities, while we still lack contrasted data to provide a scaling at high densities. In helium plasmas there is a notable shift of the density at which the power threshold is minimum ( n ¯ e , min ) to higher values relative to deuterium and …

Nuclear and High Energy PhysicsPhysics::Plasma PhysicstritiumL–H transitionPhysics::Atomic PhysicsheliumisotopeCondensed Matter PhysicsL-H transition
researchProduct

Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating

2018

International audience; During the 2015--2016 JET campaigns, many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper, we review various key recent hybrid discharges and model the combined ICRF NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to match the cyclotron frequency of minority H at the centre of the tokamak coinciding with the second harmonic cyclotron resonance of D. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of D beam ions, allowing us to assess its impact on the neutron rate…

Nuclear and High Energy PhysicsLight nucleusfusionPlasma heatingicrf heatingNuclear engineeringion-cyclotron rangeCyclotronJET hybrid plasmaICRF heating; NBI heating; JET hybrid plasmas; fusion enhancement; ION-CYCLOTRON RANGE; ENHANCEMENT; FUSION7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionICRF heatingfusion enhancementdt plasmaslawNBI heating0103 physical sciences010306 general physicsjet hybrid plasmastokamakenhancementfusion enhancement; ICRF heating; JET hybrid plasmas; NBI heatingnbi heatingJet (fluid)Emphasis (telecommunications)PlasmaCondensed Matter PhysicsJET hybrid plasmasSettore ING-IND/20 - Misure e Strumentazione NucleariresonanceEnvironmental science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct