0000000000323830
AUTHOR
Piero Altoè
Structure, Spectroscopy, and Spectral Tuning of the Gas-Phase Retinal Chromophore: The β-Ionone "Handle" and Alkyl Group Effect
The low-lying singlet states (i.e. S0, S1, and S2) of the chromophore of rhodopsin, the protonated Schiff base of 11-cis-retinal (PSB11), and of its all-trans photoproduct have been studied in isolated conditions by using ab initio multiconfigurational second-order perturbation theory. The computed spectroscopic features include the vertical excitation, the band origin, and the fluorescence maximum of both isomers. On the basis of the S0-->S1 vertical excitation, the gas-phase absorption maximum of PSB11 is predicted to be 545 nm (2.28 eV). Thus, the predicted absorption maximum appears to be closer to that of the rhodopsin pigment (2.48 eV) and considerably red-shifted with respect to that…
Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: on the role of counterion quenching.
Hybrid QM(CASPT2//CASSCF/6-31G*)/MM(Amber) computations have been used to map the photoisomerization path of the retinal chromophore in Rhodopsin and explore the reasons behind the photoactivity efficiency and spectral control in the visual pigments. It is shown that while the electrostatic environment plays a central role in properly tuning the optical properties of the chromophore, it is also critical in biasing the ultrafast photochemical event: it controls the slope of the photoisomerization channel as well as the accessibility of the S(1)/S(0) crossing space triggering the ultrafast decay. The roles of the E113 counterion, the E181 residue, and the other amino acids of the protein pock…