0000000000324122

AUTHOR

Matthias Wocher

0000-0002-7180-2356

showing 8 related works from this author

Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery

2021

Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid model for the retrieval of non-photosynthetic cropland biomass. The workflow included coupling the leaf optical model PROSPECT-PRO with the canopy reflectance model 4SAIL, which allowed us to simulate NPV biomass from carbon-based constituents (CBC) and leaf area index (LAI). PROSAIL-PRO provided a training database for a Gaussian process regression (GPR) algorithm, simulating a wide range of non…

PCACoefficient of determinationDimensionality reductionScienceQBiomassHyperspectral imaginghybrid retrievalPRISMAPROSAIL-PROVegetationNPVImaging spectroscopyCHIMEKrigingactive learningGeneral Earth and Planetary SciencesEnvironmental scienceLeaf area indexPRISMA; CHIME; NPV; Gaussian process regression; hybrid retrieval; active learning; PCA; PROSAIL-PROGaussian process regressionRemote sensingRemote Sensing
researchProduct

Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data.

2022

The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically-based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing Sentinel-2 (S2) Level-1C (L1C)…

sentinel-2active learning (AL)Soil ScienceGeologyUNESCO::CIENCIAS TECNOLÓGICASUncertainty estimategaussian processes (GP)google earth engineBiophysical and biochemical crop traiteuclidean distance-based diversity (EBD)top-of-atmosphere reflectancehybrid retrieval methodsHybrid retrieval methoduncertainty estimatesbiophysical and biochemical crop traitsatmosphere radiative transfer modelComputers in Earth SciencesRemote sensing of environment
researchProduct

Retrieval of aboveground crop nitrogen content with a hybrid machine learning method

2020

Abstract Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws. Moreover, most studies solely relied on the correlation of chlorophyll content with nitrogen, and thus neglected the fact that most N is bound in proteins. Our study presents a hybrid retrieval method using a physically-base…

FOS: Computer and information sciencesComputer Science - Machine LearningHeteroscedasticity010504 meteorology & atmospheric sciencesMean squared errorEnMAP0211 other engineering and technologiesGaussian processes02 engineering and technologyManagement Monitoring Policy and LawQuantitative Biology - Quantitative Methods01 natural sciencesMachine Learning (cs.LG)symbols.namesakeHomoscedasticityEnMAPAgricultural monitoringComputers in Earth SciencesGaussian processQuantitative Methods (q-bio.QM)021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesMathematicsRemote sensing2. Zero hungerGlobal and Planetary ChangeInversionHyperspectral imagingImaging spectroscopyRadiative transfer modelingRegressionImaging spectroscopyFOS: Biological sciences[SDE]Environmental SciencessymbolsInternational Journal of Applied Earth Observation and Geoinformation
researchProduct

Towards Quantifying Non-Photosynthetic Vegetation for Agriculture Using Spaceborne Imaging Spectroscopy

2021

Non-photosynthetic vegetation (NPV) has been identified as priority variable in the context of new spaceborne imaging spectroscopy missions. In this study we provide a first attempt to quantify NPV biomass from these unprecedented data streams to be provided by multiple recently launched or planned instruments. A hybrid workflow is proposed including Gaussian process regression (GPR) trained over radiative transfer model (RTM) simulations and applying active learning strategies. A soybean field data set including two dates with NPV measurements on yellow and senescent (brown) plant organs was used for model validation, resulting in relative errors of 13.4%. This prototype retrieval model wa…

2. Zero hunger010504 meteorology & atmospheric sciencesData stream mining0211 other engineering and technologiesEnMAPHyperspectral imagingContext (language use)PRISMA02 engineering and technologyVegetationVegetation functional trait01 natural sciencesLigninImaging spectroscopyAtmospheric radiative transfer codesWorkflowHybrid approacheCHIMEKrigingEnvironmental scienceCelluloseGaussian process regression021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow.

2021

In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere model at the TOA scale. Establishe…

010504 meteorology & atmospheric sciencesMean squared errorScienceReference data (financial markets)MathematicsofComputing_GENERAL0211 other engineering and technologieshybrid model02 engineering and technologyAtmospheric model01 natural sciencessymbols.namesaketop-of-atmosphere reflectanceKrigingLeaf area indexGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensing2. Zero hungerQbiophysical and biochemical traits; top-of-atmosphere reflectance; Sentinel-2; variational heteroscedastic Gaussian process regression; hybrid modelvariational heteroscedastic Gaussian process regressionVegetation15. Life on landsymbolsGeneral Earth and Planetary Sciencesbiophysical and biochemical traitsSentinel-2Scale (map)Remote sensing
researchProduct

A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data

2021

The current exponential increase of spatiotemporally explicit data streams from satellite-based Earth observation missions offers promising opportunities for global vegetation monitoring. Intelligent sampling through active learning (AL) heuristics provides a pathway for fast inference of essential vegetation variables by means of hybrid retrieval approaches, i.e., machine learning regression algorithms trained by radiative transfer model (RTM) simulations. In this study we summarize AL theory and perform a brief systematic literature survey about AL heuristics used in the context of Earth observation regression problems over terrestrial targets. Across all relevant studies it appeared that…

Earth observation010504 meteorology & atmospheric sciencesComputer scienceActive learning (machine learning)Science0211 other engineering and technologiesEnMAP02 engineering and technologycomputer.software_genre01 natural sciencesKriging021101 geological & geomatics engineering0105 earth and related environmental sciencesData processingData stream miningQSampling (statistics)15. Life on landquery strategieshyperspectraloptimal experimental designGeneral Earth and Planetary SciencesData miningHeuristicsLiterature surveycomputerGaussian process regressionRemote Sensing
researchProduct

Retrieval of carbon content and biomass from hyperspectral imagery over cultivated areas

2022

Computers in Earth SciencesEngineering (miscellaneous)Atomic and Molecular Physics and OpticsComputer Science ApplicationsISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions

2020

Abstract Nitrogen (N) is considered as one of the most important plant macronutrients and proper management of N therefore is a pre-requisite for modern agriculture. Continuous satellite-based monitoring of this key plant trait would help to understand individual crop N use efficiency and thus would enable site-specific N management. Since hyperspectral imaging sensors could provide detailed measurements of spectral signatures corresponding to the optical activity of chemical constituents, they have a theoretical advantage over multi-spectral sensing for the detection of crop N. The current study aims to provide a state-of-the-art overview of crop N retrieval methods from hyperspectral data…

2. Zero hungerSpectral signature010504 meteorology & atmospheric sciencesComputer science0208 environmental biotechnology[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomySoil ScienceHyperspectral imagingGeology02 engineering and technology15. Life on land01 natural sciencesArticleRegression020801 environmental engineeringNonparametric regressionVNIRChemometricsImaging spectroscopyComputers in Earth SciencesComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesParametric statisticsRemote sensingRemote Sensing of Environment
researchProduct