0000000000324308
AUTHOR
Hassan Pazira
A Software Tool For Sparse Estimation Of A General Class Of High-dimensional GLMs
Generalized linear models are the workhorse of many inferential problems. Also in the modern era with high-dimensional settings, such models have been proven to be effective exploratory tools. Most attention has been paid to Gaussian, binomial and Poisson settings, which have efficient computational implementations and where either the dispersion parameter is largely irrelevant or absent. However, general GLMs have dispersion parameters φ that affect the value of the log- likelihood. This in turn, affects the value of various information criteria such as AIC and BIC, and has a considerable impact on the computation and selection of the optimal model.The R-package dglars is one of the standa…
Sparse relative risk regression models
Summary Clinical studies where patients are routinely screened for many genomic features are becoming more routine. In principle, this holds the promise of being able to find genomic signatures for a particular disease. In particular, cancer survival is thought to be closely linked to the genomic constitution of the tumor. Discovering such signatures will be useful in the diagnosis of the patient, may be used for treatment decisions and, perhaps, even the development of new treatments. However, genomic data are typically noisy and high-dimensional, not rarely outstripping the number of patients included in the study. Regularized survival models have been proposed to deal with such scenarios…
Extended differential geometric LARS for high-dimensional GLMs with general dispersion parameter
A large class of modeling and prediction problems involves outcomes that belong to an exponential family distribution. Generalized linear models (GLMs) are a standard way of dealing with such situations. Even in high-dimensional feature spaces GLMs can be extended to deal with such situations. Penalized inference approaches, such as the $$\ell _1$$ or SCAD, or extensions of least angle regression, such as dgLARS, have been proposed to deal with GLMs with high-dimensional feature spaces. Although the theory underlying these methods is in principle generic, the implementation has remained restricted to dispersion-free models, such as the Poisson and logistic regression models. The aim of this…
Using Differential Geometry for Sparse High-Dimensional Risk Regression Models
With the introduction of high-throughput technologies in clinical and epidemiological studies, the need for inferential tools that are able to deal with fat data-structures, i.e., relatively small number of observations compared to the number of features, is becoming more prominent. In this paper we propose an extension of the dgLARS method to high-dimensional risk regression models. The main idea of the proposed method is to use the differential geometric structure of the partial likelihood function in order to select the optimal subset of covariates.