0000000000324308

AUTHOR

Hassan Pazira

showing 4 related works from this author

A Software Tool For Sparse Estimation Of A General Class Of High-dimensional GLMs

2022

Generalized linear models are the workhorse of many inferential problems. Also in the modern era with high-dimensional settings, such models have been proven to be effective exploratory tools. Most attention has been paid to Gaussian, binomial and Poisson settings, which have efficient computational implementations and where either the dispersion parameter is largely irrelevant or absent. However, general GLMs have dispersion parameters φ that affect the value of the log- likelihood. This in turn, affects the value of various information criteria such as AIC and BIC, and has a considerable impact on the computation and selection of the optimal model.The R-package dglars is one of the standa…

Statistics and ProbabilityNumerical Analysishigh-dimensional data dglars penalized inference computational statisticsStatistics Probability and UncertaintySettore SECS-S/01 - Statistica
researchProduct

Sparse relative risk regression models

2020

Summary Clinical studies where patients are routinely screened for many genomic features are becoming more routine. In principle, this holds the promise of being able to find genomic signatures for a particular disease. In particular, cancer survival is thought to be closely linked to the genomic constitution of the tumor. Discovering such signatures will be useful in the diagnosis of the patient, may be used for treatment decisions and, perhaps, even the development of new treatments. However, genomic data are typically noisy and high-dimensional, not rarely outstripping the number of patients included in the study. Regularized survival models have been proposed to deal with such scenarios…

Statistics and ProbabilityClustering high-dimensional dataComputer sciencedgLARSInferenceScale (descriptive set theory)BiostatisticsMachine learningcomputer.software_genreRisk Assessment01 natural sciencesRegularization (mathematics)Relative risk regression model010104 statistics & probability03 medical and health sciencesNeoplasmsCovariateHumansComputer Simulation0101 mathematicsOnline Only ArticlesSurvival analysis030304 developmental biology0303 health sciencesModels Statisticalbusiness.industryLeast-angle regressionRegression analysisGeneral MedicineSurvival AnalysisHigh-dimensional dataGene expression dataRegression AnalysisArtificial intelligenceStatistics Probability and UncertaintySettore SECS-S/01 - StatisticabusinessSparsitycomputerBiostatistics
researchProduct

Extended differential geometric LARS for high-dimensional GLMs with general dispersion parameter

2018

A large class of modeling and prediction problems involves outcomes that belong to an exponential family distribution. Generalized linear models (GLMs) are a standard way of dealing with such situations. Even in high-dimensional feature spaces GLMs can be extended to deal with such situations. Penalized inference approaches, such as the $$\ell _1$$ or SCAD, or extensions of least angle regression, such as dgLARS, have been proposed to deal with GLMs with high-dimensional feature spaces. Although the theory underlying these methods is in principle generic, the implementation has remained restricted to dispersion-free models, such as the Poisson and logistic regression models. The aim of this…

Statistics and ProbabilityGeneralized linear modelMathematical optimizationGeneralized linear modelsPredictor-€“corrector algorithmGeneralized linear model02 engineering and technologyPoisson distributionDANTZIG SELECTOR01 natural sciencesCross-validationHigh-dimensional inferenceTheoretical Computer Science010104 statistics & probabilitysymbols.namesakeExponential familyLEAST ANGLE REGRESSION0202 electrical engineering electronic engineering information engineeringApplied mathematicsStatistics::Methodology0101 mathematicsCROSS-VALIDATIONMathematicsLeast-angle regressionLinear model020206 networking & telecommunicationsProbability and statisticsVARIABLE SELECTIONEfficient estimatorPredictor-corrector algorithmComputational Theory and MathematicsDispersion paremeterLINEAR-MODELSsymbolsSHRINKAGEStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaStatistics and Computing
researchProduct

Using Differential Geometry for Sparse High-Dimensional Risk Regression Models

2023

With the introduction of high-throughput technologies in clinical and epidemiological studies, the need for inferential tools that are able to deal with fat data-structures, i.e., relatively small number of observations compared to the number of features, is becoming more prominent. In this paper we propose an extension of the dgLARS method to high-dimensional risk regression models. The main idea of the proposed method is to use the differential geometric structure of the partial likelihood function in order to select the optimal subset of covariates.

high-dimensional datasparsitydgLARSrisk regression modelSettore SECS-S/01 - Statisticasurvival analysis
researchProduct