0000000000324490

AUTHOR

Thomas H. Langer

A ride comfort tyre model for off-highway vehicles

Tyre modelling is a major challenge when using time domain multibody simulation models to evaluate ride comfort on off-highway commercial vehicles. Further, parameters for these big tyres are difficult to obtain and thus, commercial car tyre models are difficult to apply. In this research work, a simple vertical tyre model for off-highway ride comfort evaluation is suggested. A displaced volume approach has been developed and combined with the slip theory to yield a tyre model that can be characterised by only three parameters. Full scale measurements on a dump truck have been carried out. Force responses from measurements are compared to the simulation results. Acceleration responses and t…

research product

Experimental analysis of occupational whole-body vibration exposure of agricultural tractor with large square baler

Abstract This study investigates longitudinal whole-body vibration in agricultural tractors powering a large square baler. The aim is to test the hypothesis that four-wheel drive has an influence on the longitudinal dynamic response. A number of experimental measurements are carried out on a specific vehicle combination driving uphill and downhill. The whole-body vibration exposure is measured at the operator seat under different conditions. The statistic results show a significant difference on the whole-body vibration exposure depending on operating conditions. Driving uphill and downhill with four-wheel drive activated showed the highest difference with increased vibration level at downh…

research product

Reducing whole-body vibration exposure in backhoe loaders by education of operators

Author's version of an article published in the journal: International Journal of Industrial Ergonomics. Also available from the publisher at: http://dx.doi.org/10.1016/j.ergon.2012.03.001 Whole-body vibration is a health hazard for operators of construction machinery. The level of whole-body vibration exposure on the operator is governed by three different factors; performance of the suspension system of the machine, planning of the work and the skills of the operator.In this research work it is investigated whether there is a potential in bringing down the level of whole-body vibration exposure by educating operators of backhoe loaders. This is carried out by an experimental setup. Six ex…

research product

Suspension system performance optimization with discrete design variables

Published version of an article in the journal: Structural and Multidisciplinary Optimization. Also available from the publisher at: http://dx.doi.org/10.1007/s00158-013-0888-7 Suspension systems on commercial vehicles have become an important feature meeting the requirements from costumers and legislation. The performance of the suspension system is often limited by available catalogue components. Additionally the suspension performance is restricted by the travel speed which highly influences the ride comfort. In this article a suspension system for an articulated dump truck is optimized in sense of reducing elapsed time for two specified duty cycles without violating a certain comfort th…

research product

A Tire Model for Off-Highway Vehicle Simulation on Short Wave Irregular Terrain

Manufacturers of construction machinery are challenged in several ways concerning dynamic loads. Considering off-highway dump trucks that travel through high amplitude short wave irregular terrain with considerable speed two aspects concerning dynamics are important.The first is the legal requirements that prescribe the maximum limit on the vibration exposure on the operator which is a measure for ride comfort.The second is the importance of knowing the dynamic loading of the structural parts. In order to use the wide variety of computer-aided design tools to size and optimize mechanical joints, spring-damper elements and the welded structures it is crucial to have information on the time h…

research product