0000000000324722

AUTHOR

Mari Carmen Bañuls

showing 3 related works from this author

A study of Wigner functions for discrete-time quantum walks

2013

We perform a systematic study of the discrete time Quantum Walk on one dimension using Wigner functions, which are generalized to include the chirality (or coin) degree of freedom. In particular, we analyze the evolution of the negative volume in phase space, as a function of time, for different initial states. This negativity can be used to quantify the degree of departure of the system from a classical state. We also relate this quantity to the entanglement between the coin and walker subspaces.

Work (thermodynamics)Quantum WalkQuantum PhysicsWigner FunctionNegativityFísicaFOS: Physical sciencesNegativity effectGeneral ChemistryCondensed Matter PhysicsComputational MathematicsDiscrete time and continuous timeQuantum mechanicsWigner distribution functionGeneral Materials ScienceQuantum walkElectrical and Electronic EngineeringQuantum Physics (quant-ph)Mathematical physicsMathematics
researchProduct

Reply to Comment on ‘Wigner function for a particle in an infinite lattice’

2013

In a recent paper (2012 New J. Phys. 14 103009), we proposed a definition of the Wigner function for a particle on an infinite lattice. Here we argue that the criticism to our work raised by Bizarro is not substantial and does not invalidate our proposal.

PhysicsQuantum mechanicsLattice (order)General Physics and AstronomyWigner distribution functionNew Journal of Physics
researchProduct

Non-Markovianity and memory of the initial state

2017

We explore in a rigorous manner the intuitive connection between the non-Markovianity of the evolution of an open quantum system and the performance of the system as a quantum memory. Using the paradigmatic case of a two-level open quantum system coupled to a bosonic bath, we compute the recovery fidelity, which measures the best possible performance of the system to store a qubit of information. We deduce that this quantity is connected, but not uniquely determined, by the non-Markovianity, for which we adopt the BLP measure proposed in \cite{breuer2009}. We illustrate our findings with explicit calculations for the case of a structured environment.

Statistics and ProbabilityQuantum PhysicsComputer sciencemedia_common.quotation_subjectMeasure (physics)General Physics and AstronomyFidelityFOS: Physical sciencesStatistical and Nonlinear PhysicsState (functional analysis)01 natural sciencesQuantum memory010305 fluids & plasmasConnection (mathematics)Open quantum systemModeling and SimulationQubit0103 physical sciencesStatistical physics010306 general physicsQuantum Physics (quant-ph)Mathematical Physicsmedia_common
researchProduct