0000000000324736
AUTHOR
Paolo Massazza
On a class of languages with holonomic generating functions
We define a class of languages (RCM) obtained by considering Regular languages, linear Constraints on the number of occurrences of symbols and Morphisms. The class RCM presents some interesting closure properties, and contains languages with holonomic generating functions. As a matter of fact, RCM is related to one-way 1-reversal bounded k-counter machines and also to Parikh automata on letters. Indeed, RCM is contained in L-NFCM but not in L-DFCM, and strictly includes L-CPA. We conjecture that L-DFCM subset of RCM
On computing the degree of convexity of polyominoes
In this paper we present an algorithm which has as input a convex polyomino $P$ and computes its degree of convexity, defined as the smallest integer $k$ such that any two cells of $P$ can be joined by a monotone path inside $P$ with at most $k$ changes of direction. The algorithm uses space $O(m + n)$ to represent a polyomino $P$ with $n$ rows and $m$ columns, and has a running time $O(min(m; r k))$, where $r$ is the number of corners of $P$. Moreover, the algorithm leads naturally to a decomposition of $P$ into simpler polyominoes.
An Efficient Algorithm for the Generation of Z-Convex Polyominoes
We present a characterization of Z-convex polyominoes in terms of pairs of suitable integer vectors. This lets us design an algorithm which generates all Z-convex polyominoes of size n in constant amortized time.
On the exhaustive generation of k-convex polyominoes
The degree of convexity of a convex polyomino P is the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. In this paper we present a simple algorithm for computing the degree of convexity of a convex polyomino and we show how it can be used to design an algorithm that generates, given an integer k, all k-convex polyominoes of area n in constant amortized time, using space O(n). Furthermore, by applying few changes, we are able to generate all convex polyominoes whose degree of convexity is exactly k.