0000000000324802
AUTHOR
Thomas Holler
Glutamate Activates Phospholipase D in Hippocampal Slices of Newborn and Adult Rats
Phospholipase D (PLD) is activated by many neurotransmitters in a novel signal transduction pathway. In the present work, PLD activity was studied comparatively in hippocampal slices of newborn and adult rats. Basal PLD activity in adult rats was almost three times higher than in newborn rats. In newborn rats, L-glutamate and 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) time- and concentration-dependently enhanced the formation of [3H]phosphatidylpropanol ([3H]PP) and of [3H]phosphatidic acid in the presence of 2% propanol. N-Methyl-D-aspartate and kainate (both 1 mM) caused small, but significant increases (approximately 50%), whereas alpha-amino-3-hydroxy-5-methylisoxazole…
Glutamatergic activation of hippocampal phospholipase D: postnatal fading and receptor desensitization.
Abstract: Phospholipase D (PLD) activity was determined in rat hippocampal slices between postnatal days 3 and 35. After birth, basal PLD activity was low and, within 2 weeks, increased to reach a plateau that was maintained up to the adult age. Likewise the response to glutamate developed postnatally to reach a maximum at day 8, but then faded rapidly and was almost absent at day 35. Activation of PLD by 4β-phorbol 12β,13α-dibutyrate (PDB) was independent of age, whereas the effect of aluminum fluoride (AlF4−) increased to a plateau within the first week. At day 8, PLD stimulation by glutamate via metabotropic receptors involved protein kinase C activation, but was independent of Ca2+ infl…
Release of choline from rat brain under hypoxia: contribution from phospholipase A2 but not from phospholipase D
Moderate hypoxia induced in rats by inhalation of 10% oxygen led to an increase of the concentration of free choline in the brain and caused a large net-release of choline from the brain into the venous blood as determined by the measurement of the arterio-venous difference. In hippocampal slices from rat brain, hypoxia increased the release of choline into the superfusion medium. The activity of phospholipase D, as measured by the formation of phosphatidylpropanol in the presence of propanol, was not stimulated under these conditions. However, the mobilization of choline was completely depressed by lowering extracellular calcium and by 0.1 mM mepacrine. We conclude that hypoxia leads to a …