0000000000324825

AUTHOR

M. W. Grünewald

showing 13 related works from this author

Electron and Photon Identification in the D0 Experiment

2013

The electron and photon reconstruction and identification algorithms used by the D0 Collaboration at the Fermilab Tevatron collider are described. The determination of the electron energy scale and resolution is presented. Studies of the performance of the electron and photon reconstruction and identification are summarized.

Nuclear and High Energy PhysicsPhotonMonte Carlo methodTevatronFOS: Physical sciencesElectron01 natural sciencesHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderInstrumentationPhysics010308 nuclear & particles physicsResolution (electron density)D0 experiment3. Good healthExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

Search for Stopped Gluinos frompp¯Collisions ats=1.96  TeV

2007

Long-lived, heavy particles are predicted in a number of models beyond the standard model of particle physics. We present the first direct search for such particles' decays, occurring up to 100 h after their production and not synchronized with an accelerator bunch crossing. We apply the analysis to the gluino (g), predicted in split supersymmetry, which after hadronization can become charged and lose enough momentum through ionization to come to rest in dense particle detectors. Approximately 410 pb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected with the D0 detector during Run II of the Fermilab Tevatron collider are analyzed in search of such "stopped gluinos" decaying in…

PhysicsParticle physicsGluinoSplit supersymmetry010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatronGeneral Physics and Astronomy01 natural sciences7. Clean energyHadronizationlaw.inventionGluonNuclear physicsParticle decaylaw0103 physical sciencesNeutralinoHigh Energy Physics::Experiment010306 general physicsColliderPhysical Review Letters
researchProduct

Measurement of theΛbLifetime in the Exclusive DecayΛb→J/ψΛ

2007

We have measured the {lambda}{sub b} lifetime using the exclusive decay {lambda}{sub b}{yields}J/{psi}{lambda}, based on 1.2 fb{sup -1} of data collected with the D0 detector during 2002-2006. From 171 reconstructed {lambda}{sub b} decays, where the J/{psi} and {lambda} are identified via the decays J/{psi}{yields}{mu}{sup +}{mu}{sup -} and {lambda}{yields}p{pi}, we measured the {lambda}{sub b} lifetime to be {tau}({lambda}{sub b})=1.218{sub -0.115}{sup +0.130}(stat){+-}0.042(syst) ps. We also measured the B{sup 0} lifetime in the decay B{sup 0}{yields}J/{psi}({mu}{sup +}{mu}{sup -})K{sub S}{sup 0}({pi}{sup +}{pi}{sup -}) to be {tau}(B{sup 0})=1.501{sub -0.074}{sup +0.078}(stat){+-}0.050(sy…

PhysicsCrystallographyParticle decayPair production010308 nuclear & particles physicsBranching fraction0103 physical sciencesGeneral Physics and Astronomy010306 general physicsLambda01 natural sciencesPhysical Review Letters
researchProduct

Search forZγevents with large missing transverse energy inpp¯collisions ats=1.96  TeV

2012

We present the first search for new phenomena in Z gamma final states with large missing transverse energy using data corresponding to an integrated luminosity of 6.2 fb(-1) collected with the D0 experiment in p (p) over bar collisions at root s 1.96 TeV. This signature is predicted in gauge-mediated supersymmetry-breaking models, where the lightest neutralino (chi) over tilde (0)(1) is the next-to-lightest supersymmetric particle and is produced in pairs, possibly through decay from heavier supersymmetric particles. The (chi) over tilde (0)(1) can decay either to a Z boson or a photon and an associated gravitino that escapes detection. We exclude this model at the 95% C.L. for supersymmetr…

PhysicsNuclear and High Energy PhysicsParticle physicsPhotonLuminosity (scattering theory)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyD0 experimentLambda01 natural sciencesMomentumPair production0103 physical sciencesNeutralinoHigh Energy Physics::ExperimentGravitino010306 general physicsPhysical Review D
researchProduct

Improved $b$ quark jet identification at the D0 experiment

2013

The ability to identify jets which originated from $b$ quarks is an important tool of the physics program of the D0 experiment at the Fermilab Tevatron $p\bar{p}$ collider. This article describes a new algorithm designed to select jets originating from $b$ quarks while suppressing the contamination caused by jets from other quark flavors and gluons. Additionally, a new technique, the SystemN method, for determining the misidentification rate directly from data is presented.

QuarkNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeNuclear TheoryTevatronFOS: Physical sciencesJet (particle physics)01 natural sciencesBottom quarkHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderInstrumentationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyD0 experimentGluonExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::Experiment
researchProduct

Measurement of the pp¯→W+b+X production cross section at s=1.96 TeV

2013

We present a measurement of the cross section for $W$ boson production in association with at least one {$b$-quark} jet in proton-antiproton collisions. The measurement is made using data corresponding to an integrated luminosity of 6.1\ifb recorded with the D0 detector at the Fermilab Tevatron \ppbar Collider at $\sqrt{s}=1.96$ TeV. We measure an inclusive cross section of {$\sigma(W \sim(\to\mu\nu) + b + X) = 1.04 \pm 0.05\thinspace$(stat.) $\pm 0.12 \thinspace$(syst.) pb} and $\sigma(W (\to e\nu) + b + X) = 1.00$ \pm 0.04 \thinspace$(stat.) $\pm 0.12 \thinspace$(syst.) pb in the phase space defined by $p_T^\nu > 25$ GeV, $p_T^{\text{$b$-jet}}>20$ GeV, $|\eta^{\text{$b$-jet}}| 20$ GeV and…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsTevatronOrder (ring theory)01 natural sciences7. Clean energyLuminosityNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)Combined resultNuclear Experiment010306 general physicsLeptonBosonPhysics Letters B
researchProduct

Measurement of the Semileptonic Branching Ratio ofBs0to an Orbitally ExcitedDs**State:Br(Bs0→Ds1−(2536)μ+νX)

2009

In a data sample of approximately 1.3 fb-1 collected with the D0 detector between 2002 and 2006, the orbitally excited charm state D_s1(2536) has been observed with a measured mass of 2535.7 +/- 0.6 (stat) +/- 0.5 (syst) MeV via the decay mode B0_s -> D_s1(2536) mu nu X. A first measurement is made of the branching ratio product Br(b(bar) -> D_s1(2536) mu nu X).Br(D_s1(2536)->D* K0_S). Assuming that D_s1(2536) production in semileptonic decay is entirely from B0_s, an extraction of the semileptonic branching ratio Br(B0_s -> D_s1(2536) mu nu X) is made.

Semileptonic decayPhysicsMeson010308 nuclear & particles physicsBranching fractionQuark modelAnalytical chemistryGeneral Physics and AstronomyState (functional analysis)01 natural sciencesNuclear physicsPair productionExcited state0103 physical sciences010306 general physicsBar (unit)Physical Review Letters
researchProduct

Combination of CDF and D0 measurements of the W boson helicity in top quark decays

2012

Aaltonen, T. et al.

FERMILAB TEVATRON COLLIDERNuclear and High Energy PhysicsParticle physicsTop quark[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TevatronW helicityValue (computer science)FOS: Physical sciencesTOP QUARK7. Clean energy01 natural sciencesHigh Energy Physics - Experimentlaw.inventionStandard ModelNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FermilabTEVATRON010306 general physicsColliderBosonPhysicsW BOSONp-pbar collider; FERMILAB TEVATRON COLLIDER; W bosons; W helicity010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]W bosonsHelicityD0p-pbar colliderExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCDFPhysical Review. D, Particles, Fields, Gravitation, and Cosmology
researchProduct

Jet energy scale determination in the D0 experiment

2013

The calibration of jet energy measured in the \DZero detector is presented, based on ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. Jet energies are measured using a sampling calorimeter composed of uranium and liquid argon as the passive and active media, respectively. This paper describes the energy calibration of jets performed with photon+jet, Z+jet and dijet{} events, with jet transverse momentum pT > 6 GeV and pseudorapidity range |eta| < 3.6. The corrections are measured separately for data and simulation, achieving a precision of 1.4%-1.8% for jets in the central part of the calorimeter and up to 3.5% for the jets with pseudorapidity…

Nuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaTevatronFOS: Physical sciencesParton7. Clean energy01 natural scienceslaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderNuclear ExperimentInstrumentationPhysicsJet (fluid)Calorimeter (particle physics)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGluonPseudorapidityExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::Experiment
researchProduct

Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting

2016

We measure the top quark mass in dilepton final states of top-antitop events in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb^-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. We also improve the calibration of jet energies using the calibration determined in top-antitop to lepton+jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured top quark mass is mt = 173.32 +/- 1.36(stat) +/- 0.85(syst) GeV.

Top quarkdependence [flavor]TevatronATLAS DETECTORJet (particle physics)pair production [top]7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsSubatomär fysikHigh Energy Physics - Experiment (hep-ex)DZEROSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSBatavia TEVATRON CollFermilabNuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Physicsscattering [anti-p p]Luminosity (scattering theory)PhysicsNuclear & Particles Physicslcsh:QC1-999Physics NuclearPhysical SciencesPOLEflavor [quark]mass: measured [top]Neutrinotop quark mass; dilepton decays; neutrino weightingdata analysis methodParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaSTANDARD MODELFOS: Physical sciencesAstronomy & AstrophysicsAccelerator Physics and Instrumentation530Standard ModelNuclear physics0202 Atomic Molecular Nuclear Particle And Plasma Physicsfinal state [dilepton]0103 physical sciencesMODEL HIGGS-BOSONddc:530High Energy Physics010306 general physics1960 GeV-cmsScience & TechnologyPP COLLISIONSIDENTIFICATION010308 nuclear & particles physicsDATA processing & computer scienceHigh Energy Physics::PhenomenologyAcceleratorfysik och instrumenteringenergy [jet]PRODUCTION CROSS-SECTION(MS)OVER-BAR MASSEScalibration [jet]Experimental High Energy PhysicsPhysics::Accelerator PhysicsTEVHigh Energy Physics::Experimentddc:004statisticalcolliding beams [anti-p p]lcsh:Physicsexperimental resultsLepton
researchProduct

Measurement of spin correlation between top and antitop quarks produced in pp¯ collisions at s=1.96 TeV

2016

Department of Energy (United States of America); National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission (France); National Center for Scientific Research/ National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation (Russia); National Research Center "Kurchatov Institute" of the Russian Federation (Russia); Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology (Brazil); Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy (India); Department of Science…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsmedia_common.quotation_subjectAtomic energyLibrary science7. Clean energy01 natural scienceslanguage.human_languageBildungGermanNuclear physicsState (polity)Basic research0103 physical scienceslanguageChristian ministry010306 general physicsChinaResearch centermedia_commonPhysics Letters B
researchProduct

Experimental Discrimination between Charge2e/3Top Quark and Charge4e/3Exotic Quark Production Scenarios

2007

We present the first experimental discrimination between the 2e/3 and 4e/3 top quark electric charge scenarios, using top quark pairs (ttbar) produced in ppbar collisions at sqrt{s}=1.96 TeV by the Fermilab Tevatron collider. We use 370 pb-1 of data collected by the D0 experiment and select events with at least one high transverse momentum electron or muon, high transverse energy imbalance, and four or more jets. We discriminate between b- and bbar-quark jets by using the charge and momenta of tracks within the jet cones. The data is consistent with the expected electric charge, |q|=2e/3. We exclude, at the 92% C.L., that the sample is solely due to the production of exotic quark pairs QQba…

QuarkPhysicsParticle physicsTop quarkMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatronGeneral Physics and AstronomyTop quark condensateJet (particle physics)01 natural sciences7. Clean energyBottom quarkElectric chargeNuclear physics0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsPhysical Review Letters
researchProduct

Properties ofL=1B1andB2*Mesons

2007

This Letter presents the first strong evidence for the resolution of the excited B mesons B-1 and B-2(*) as two separate states in fully reconstructed decays to B+(*())pi(-). The mass of B-1 is measured to be 5720.6 +/- 2.4 +/- 1.4 MeV/c(2) and the mass difference Delta M between B-2* and B-1 is 26.2 +/- 3.1 +/- 0: 9 MeV/c(2), giving the mass of the B-2* as 5746.8 +/- 2.4 +/- 1.7 MeV/c(2). The production rate for B-1 and B-2* mesons is determined to be a fraction (13.9 +/- 1.9 +/- 3.2)% of the production rate of the B+ meson.

PhysicsParticle propertiesMeson010308 nuclear & particles physicsHadronAnalytical chemistryGeneral Physics and AstronomyElementary particle01 natural sciencesExcited state0103 physical sciencesB mesonAtomic physics010306 general physicsProduction rateBosonPhysical Review Letters
researchProduct