0000000000324848

AUTHOR

Giovanni Miniutti

showing 8 related works from this author

"Gravitational waves from newly born, hot neutron stars"

2003

We study the gravitational radiation associated to the non--radial oscillations of newly born, hot neutron stars. The frequencies and damping times of the relevant quasi--normal modes are computed for two different models of proto--neutron stars, at different times of evolution, from its birth until it settles down as a cold neutron star. We find that the oscillation properties of proto--neutron stars are remarkably different from those of their cold, old descendants and that this affects the characteristic features of the gravitational signal emitted during the post-collapse evolution. The consequences on the observability of these signals by resonant--mass and interferometric detectors ar…

PhysicsGravitational waveOscillationAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsAstrophysicsGeneral Relativity and Quantum CosmologyGalaxyGravitationStarsNeutron starSignal-to-noise ratioSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Galaxy AstrophysicsEnergy (signal processing)
researchProduct

Gravitational waves from neutron stars at different evolutionary stages

2003

We study how the internal structure of a neutron star and the physical processes that may occur during its evolution affect the quasi-normal mode spectrum, and consequently the gravitational radiation it emits. We discuss whether these modes can be excited and how much energy they should carry for the gravitational signal to be detectable by the first generation of interferometric antennas or by the new generation of high-frequency gravitational detectors, interferometric or resonant, that are under investigation.

PhysicsGravitationInterferometryNeutron starGravitational-wave observatoryPhysics and Astronomy (miscellaneous)Gravitational waveAstronomyAstrophysicsGravitational-wave astronomyGravitational energyGravitational redshiftClassical and Quantum Gravity
researchProduct

Accretion in strong field gravity with eXTP

2019

In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced 'spectral-timing-polarimetry' techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.

ACTIVE GALACTIC NUCLEIAccretionaccretion; black holes physics; X-ray; Physics and Astronomy (all)black holes physicAstronomyAstrophysics::High Energy Astrophysical PhenomenaBlack holes physicsPolarimetryFOS: Physical sciencesBLACK-HOLE SPINGeneral Physics and AstronomyStrong fieldAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesX-rayPhysics and Astronomy (all)ELECTROMAGNETIC EMISSIONSettore FIS/05 - Astronomia e Astrofisicablack holes physicsaccretion0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)XMM-NEWTONPhysicsLENS-THIRRING PRECESSION[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]QUASI-PERIODIC OSCILLATIONS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]IRON KAccretion (astrophysics)X ray[SDU]Sciences of the Universe [physics]ULTRA-FAST OUTFLOWSAstrophysics::Earth and Planetary AstrophysicsSPECTRAL FEATURESAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-RAY BINARIESScience China Physics, Mechanics & Astronomy
researchProduct

Time domain astronomy with the THESEUS satellite

2021

THESEUS is a medium size space mission of the European Space Agency, currently under evaluation for a possible launch in 2032. Its main objectives are to investigate the early Universe through the observation of gamma-ray bursts and to study the gravitational waves electromagnetic counterparts and neutrino events. On the other hand, its instruments, which include a wide field of view X-ray (0.3-5 keV) telescope based on lobster-eye focussing optics and a gamma-ray spectrometer with imaging capabilities in the 2-150 keV range, are also ideal for carrying out unprecedented studies in time domain astrophysics. In addition, the presence onboard of a 70 cm near infrared telescope will allow simu…

010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectAstronomyAstrophysics::High Energy Astrophysical PhenomenaSocio-culturaleFOS: Physical sciencesX-ray sources01 natural scienceslaw.inventionTelescopeX-ray sourceSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesTime domain[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Variability010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesmedia_commonTime domain astronomyPhysicsSpectrometerGravitational waveX-rays surveysAstronomyAstronomy and AstrophysicsUniverseSpace and Planetary ScienceSatelliteNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsExperimental Astronomy
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

Observatory science with eXTP

2019

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

cataclysmic binariesAstronomyFIELD CAMERAS OBSERVATIONSspace research instruments nuclear astrophysics flare stars accretion and accretion disks mass loss and stellar winds cataclysmic binaries X-ray binaries supernova remnants active galactic nuclei X-ray bursts gamma-ray bursts gravitational wavesGeneral Physics and Astronomygamma-ray burstspace research instrument01 natural sciencesGamma ray burstsObservatoryAccretion and accretion disksAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsgravitational waveaccretion and accretion diskPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)supernova remnants[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]flare starsgamma-ray burstsAstrophysics::Instrumentation and Methods for Astrophysicsaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray bursts; Physics and Astronomy (all)Space research instrumentsX ray burstSupernovaX-ray binariesgravitational wavesaccretion and accretion disksQUIETHigh massX-ray binarieMass loss and stellar windsNuclear astrophysicsGamma-ray burstsspace research instrumentsAstrophysics - High Energy Astrophysical PhenomenaPULSAR-WIND NEBULAEFAST RADIO-BURSTSAstrofísica nuclearActive galactic nucleusTIDAL DISRUPTIONSupernova remnantsAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysicsPolarimetryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsACCRETING NEUTRON-STARSaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray burstsGravitational wavesPhysics and Astronomy (all)cataclysmic binarieSettore FIS/05 - Astronomia e AstrofisicaSUPERMASSIVE BLACK-HOLES0103 physical sciences010306 general physicsX-ray burstAstrophysics::Galaxy AstrophysicsCataclysmic binariesActive galactic nucleiflare starAstronomyWhite dwarfFlare starsStarssupernova remnantQB460-466 Astrophysics[SDU]Sciences of the Universe [physics]mass loss and stellar wind:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]active galactic nucleiX-RAYX-ray burstsSupernova remmantsmass loss and stellar windsX ray binaries[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SEYFERT 1 GALAXYnuclear astrophysic
researchProduct

The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

2023

The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (i…

X-IFU: The X-ray Integral Field UnitCosmology and Nongalactic Astrophysics (astro-ph.CO)The X-ray Integral Field Unit [X-IFU]Solar and stellar astrophysicsFOS: Physical sciences/dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Settore FIS/05 - Astronomia E AstrofisicaX-raysSDG 7 - Affordable and Clean EnergyInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)High Energy Astrophysical Phenomena (astro-ph.HE)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyAstrophysics of GalaxiesAthena: the advanced telescope for high energy astrophysicsAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesAstrophysical phenomenaSpace instrumentationAstrophysics - Solar and Stellar AstrophysicsHigh energySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]the advanced telescope for high energy astrophysics [Athena]Athena: the advanced telescope for high energy astrophysics · X-IFU: The X-ray Integral Field Unit · Space instrumentation · X-rays · ObservatoryObservatoryAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSDG 12 - Responsible Consumption and ProductionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The ATHENA X-ray Integral Field Unit (X-IFU)

2018

Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, United States.

Point spread functionPhotonAstrophysics::High Energy Astrophysical PhenomenaField of viewAthena; Instrumentation; Space telescopes; X-ray Integral Field Unit; X-ray spectroscopy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringCondensed Matter PhysicLarge format01 natural sciences7. Clean energySpace telescopeslaw.inventionTelescopePhysics::Popular PhysicsSettore FIS/05 - Astronomia E AstrofisicaOpticslawPhysics::Plasma Physics0103 physical sciencesElectronicAthenaOptical and Magnetic MaterialsSpectral resolutionElectrical and Electronic Engineering010306 general physics010303 astronomy & astrophysicsInstrumentationPhysicsSpectrometerbusiness.industryElectronic Optical and Magnetic MaterialApplied MathematicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter Physics115 Astronomy Space sciencePhysics::History of PhysicsApplied MathematicSpace telescopeX-ray Integral Field UnitX-ray spectroscopybusiness
researchProduct