0000000000324970

AUTHOR

Chang-chun Ning

Calibration of the RPC charge readout in the ARGO-YBJ experiment

""The charge readout of Resistive Plate Chambers (RPCs) is implemented in the ARGO-YBJ experiment to measure the charged particle density of the shower front up to 10^4\\\/m^2, enabling the study of the primary cosmic rays with energies in the ''knee'' region. As the first time for RPCs being used this way, a telescope with RPCs and scintillation detectors is setup to calibrate the number of charged particles hitting a RPC versus its charge readout. Air shower particles are taken as the calibration beam. The telescope was tested at sea level and then moved to the ARGO-YBJ site for coincident operation with the ARGO-YBJ experiment. The charge readout shows good linearity with the particle de…

research product

Light-component spectrum of the primary cosmic rays in the multi-TeV region measured by the ARGO-YBJ experiment

The ARGO-YBJ experiment detects extensive air showers in a wide energy range by means of a full-coverage detector which is in stable data taking in its full configuration since November 2007 at the YBJ International Cosmic Ray Observatory (4300 m a.s.l., Tibet, People's Republic of China). In this paper the measurement of the light-component spectrum of primary cosmic rays in the energy region $(5\textdiv{}200)\text{ }\text{ }\mathrm{TeV}$ is reported. The method exploited to analyze the experimental data is based on a Bayesian procedure. The measured intensities of the light component are consistent with the recent CREAM results and higher than that obtained adding the proton and helium sp…

research product

Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment

The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.

research product

Early warning for VHE gamma-ray flares with the ARGO-YBJ detector

Detecting and monitoring emissions from flaring gamma-ray sources in the very-high-energy (VHE, > 100 GeV) band is a very important topic in gamma-ray astronomy. The ARGO-YBJ detector is characterized by a high duty cycle and a wide field of view. Therefore, it is particularly capable of detecting flares from extragalactic objects. Based on fast reconstruction and analysis, real-time monitoring of 33 selected VHE extragalactic sources is implemented. Flares exceeding a specific threshold are reported timely, hence enabling the follow-up observation of these objects using more sensitive detectors, such as Cherenkov telescopes. (C) 2011 Elsevier B.V. All rights reserved.

research product

Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment

We report the observation of TeV gamma-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statist…

research product

Energy spectrum of cosmic protons and helium nuclei by a hybrid measurement at 4300 m a.s.l.

The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured, below the so-called "knee", by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100 TeV - 700 TeV). The observed energy spectrum is compatible with a single power law with index gamma=-2.63+/-0.06.

research product

Highlights from the ARGO-YBJ Experiment

""The ARGO-YBJ experiment at YangBaJing in Tibet (4300m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few significant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton\\\/proton flux ratio, on the large-scale cosmic-ray anisotropy and on the proton-air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined.""

research product

Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector

Cosmic ray antiprotons provide an important probe to study the cosmic ray propagation in the interstellar space and to investigate the existence of dark matter. Acting the Earth-Moon system as a magnetic spectrometer, paths of primary antiprotons are deflected in the opposite sense with respect to those of the protons in their way to the Earth. This effect allows, in principle, the search for antiparticles in the direction opposite to the observed deficit of cosmic rays due to the Moon (the so-called `Moon shadow'). The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$), is particularly effective in measuring the cosmic ray …

research product

Proton-air cross section measurement with the ARGO-YBJ cosmic ray experiment

The proton-air cross section in the energy range 1-100 TeV has been measured by the ARGO-YBJ cosmic ray experiment. The analysis is based on the flux attenuation for different atmospheric depths (i.e. zenith angles) and exploits the detector capabilities of selecting the shower development stage by means of hit multiplicity, density and lateral profile measurements at ground. The effects of shower fluctuations, the contribution of heavier primaries and the uncertainties of the hadronic interaction models, have been taken into account. The results have been used to estimate the total proton-proton cross section at center of mass energies between 70 and 500 GeV, where no accelerator data are …

research product

The analog Resistive Plate Chamber detector of the ARGO-YBJ experiment

The ARGO-YBJ experiment has been in stable data taking from November 2007 till February 2013 at the YangBaJing Cosmic Ray Observatory (4300 m a.s.l.). The detector consists of a single layer of Resistive Plate Chambers (RPCs) (6700 m2) operated in streamer mode. The signal pick-up is obtained by means of strips facing one side of the gas volume. The digital readout of the signals, while allows a high space–time resolution in the shower front reconstruction, limits the measurable energy to a few hundred TeV. In order to fully investigate the 1–10 PeV region, an analog readout has been implemented by instrumenting each RPC with two large size electrodes facing the other side of the gas volume…

research product

Intrinsic linearity of bakelite Resistive Plate Chambers operated in streamer mode

Abstract Resistive Plate Chambers have largely been used in High Energy Physics and Cosmic Ray research. In view of using this detector for calorimetry applications it is important to know the maximum measurable particle density, or its intrinsic linearity limit, which is tightly related to the dimension of the discharge region. In this paper we report the results of measurements performed at the Beam Test Facility (INFN National Laboratory of Frascati, Italy) where the intrinsic linearity of bakelite RPCs operated in streamer mode has been tested at different impinging particle densities.

research product