0000000000324996

AUTHOR

Birlipta Pattanayak

MicroRNA-33b Suppresses Epithelial-Mesenchymal Transition Repressing the MYC-EZH2 Pathway in HER2+ Breast Carcinoma

Downregulation of miR-33b has been documented in many types of cancers and is being involved in proliferation, migration, and epithelial-mesenchymal transition (EMT). Furthermore, the enhancer of zeste homolog 2-gene (EZH2) is a master regulator of controlling the stem cell differentiation and the cell proliferation processes. We aim to evaluate the implication of miR-33b in the EMT pathway in HER2+ breast cancer (BC) and to analyze the role of EZH2 in this process as well as the interaction between them. miR-33b is downregulated in HER2+ BC cells vs healthy controls, where EZH2 has an opposite expression in vitro and in patients' samples. The upregulation of miR-33b suppressed proliferatio…

research product

miR-503-5p induces doxorubicin resistance in triple-negative breast cancer.

1083 Background: Triple-negative breast cancer (TNBC) is an aggressive breast cancer (BC) subtype comprising approximately 15% of BC. Conventional cytotoxic chemotherapies continue to be the mainstay for treatment of this BC, which lacks targetable markers. In this context, microRNAs have been described to have an important role. The aim of this work was to elucidate the function of miR-503-5p in doxorubicin resistance in TNBC. Methods: miR-503-5p expression was evaluated in the TNBC cell line with acquired resistance to doxorubicin (MDA-MB-231R) and its parental cell line (MDA-MB-231), by qRT-PCR. Studies of gain/loss of function of miR-503-5p were carried out in MDA-MB-231 and MDA-MB-231…

research product