0000000000326124

AUTHOR

Ralf H. Adams

The angiopoietin-Tie2 pathway regulates Purkinje cell dendritic morphogenesis in a cell-autonomous manner.

Neuro-vascular communication is essential to synchronize central nervous system development. Here, we identify angiopoietin/Tie2 as a neuro-vascular signaling axis involved in regulating dendritic morphogenesis of Purkinje cells (PCs). We show that in the developing cerebellum Tie2 expression is not restricted to blood vessels, but it is also present in PCs. Its ligands angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are expressed in neural cells and endothelial cells (ECs), respectively. PC-specific deletion of Tie2 results in reduced dendritic arborization, which is recapitulated in neural-specific Ang1-knockout and Ang2 full-knockout mice. Mechanistically, RNA sequencing reveals that Tie…

research product

EPCR Guides Hematopoietic Stem Cells Homing to the Bone Marrow Independently of Niche Clearance

Abstract Bone marrow (BM) homing and lodgment of long-term repopulating hematopoietic stem cells (LT-HSCs) are active and essential first steps during embryonic development and in clinical stem cell transplantation. Rare, BM LT-HSCs endowed with the highest self-renewal and durable repopulation potential, functionally express the anticoagulant endothelial protein C receptor (EPCR) and PAR1. In addition to coagulation and inflammation, EPCR-PAR1 signaling independently controls a BM LT-HSC retention-release switch via regulation of nitric oxide (NO) production within LT-HSCs. EPCR+ LT-HSCs are maintained in thrombomodulin+ (TM) periarterial BM microenvironments via production of activated pr…

research product