0000000000326125

AUTHOR

Andromachi Karakatsani

showing 2 related works from this author

The angiopoietin-Tie2 pathway regulates Purkinje cell dendritic morphogenesis in a cell-autonomous manner.

2021

Neuro-vascular communication is essential to synchronize central nervous system development. Here, we identify angiopoietin/Tie2 as a neuro-vascular signaling axis involved in regulating dendritic morphogenesis of Purkinje cells (PCs). We show that in the developing cerebellum Tie2 expression is not restricted to blood vessels, but it is also present in PCs. Its ligands angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are expressed in neural cells and endothelial cells (ECs), respectively. PC-specific deletion of Tie2 results in reduced dendritic arborization, which is recapitulated in neural-specific Ang1-knockout and Ang2 full-knockout mice. Mechanistically, RNA sequencing reveals that Tie…

CerebellumalphaCytoskeleton organizationAngiogenesisPurkinje cellprotocadherinsMorphogenesisneural progenitor cellsMice Transgenicself-avoidanceBiologyModels BiologicalGeneral Biochemistry Genetics and Molecular BiologyAngiopoietinAngiopoietin-2Purkinje Cellsddc:570CerebellumexpressionGene expressionmedicineAngiopoietin-1MorphogenesisAnimalsmouseMice KnockoutIntegrasessubventricular zonedifferentiationDendritesmtorc2Angiopoietin receptorReceptor TIE-2Cell biologyMice Inbred C57BLmedicine.anatomical_structuremessenger-rnaGene Expression RegulationOrgan Specificityembryonic structurescardiovascular systembiology.proteinGene DeletionSignal TransductionCell reports
researchProduct

Neuronal LRP4 regulates synapse formation in the developing CNS

2017

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific kno…

0301 basic medicineDendritic spineRabiesSynaptogenesisHippocampusBiologyHippocampal formationHippocampusNeuromuscular junctionGene Knockout TechniquesMice03 medical and health sciences0302 clinical medicinemedicineAnimalsLrp4 ; Central Nervous System Development ; Synapse Formation ; Dendritogenesis ; Transsynaptic Tracing ; Agrin ; In Utero Electroporation ; Psd95 ; Bassoon ; MouseMolecular BiologyCells CulturedLDL-Receptor Related ProteinsCerebral CortexGene knockdownAgrinDendritesCortex (botany)Cell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureReceptors LDLnervous systemRabies virusSynapsesImmunology030217 neurology & neurosurgeryDevelopmental Biology
researchProduct