0000000000326226

AUTHOR

Jean-françois Gayet

showing 13 related works from this author

In Situ, Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds

2012

The workshop on in situ airborne instrumentation: addressing and solving measurement problems in ice clouds, June 25-27, 2010, Oregon, aimed to identify unresolved questions concerning ice formation and evolution in ice clouds, assess the current state of instrumentation that can address these problems, introduce emerging technology that may overcome current measurement issues, and recommend future courses of action to improve our understanding of ice cloud microphysical. Eleven presentations were made covering measurement challenges associated measuring the composition and concentration of all the modes of ice nuclei (IN), measuring the morphology, mass, surface, and optical properties of …

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceIce cloudIce formationOperations researchEmerging technologiesTechnical noteAtmospheric research[SDE]Environmental Sciencesddc:550Systems engineeringInstrumentation (computer programming)/dk/atira/pure/subjectarea/asjc/1900/1902ComputingMilieux_MISCELLANEOUS
researchProduct

Observations of boundary layer, mixed-phase and multi-layer Arctic clouds with different lidar systems during ASTAR 2007

2009

Abstract. During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR), which was conducted in Svalbard in March and April 2007, tropospheric Arctic clouds were observed with two ground-based backscatter lidar systems (micro pulse lidar and Raman lidar) and with an airborne elastic lidar. An increase in low-level (cloud tops below 2.5 km) cloud cover from 51% to 65% was observed above Ny-Ålesund during the time of the ASTAR campaign. Four different case studies of lidar cloud observations are analyzed: With the ground-based Raman lidar, a pre-condensation layer was observed at an altitude of 2 km. The layer consisted of small droplets with a high number concentration (aroun…

Boundary layerLidarArcticMeteorologyEnvironmental scienceMixed phaseMulti layerRemote sensing
researchProduct

Lidar characterization of the Arctic atmosphere during ASTAR 2007: Four cases studies of boundary layer, mixed-phase and multi-layer clouds

2010

During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR), which was conducted in Svalbard in March and April 2007, tropospheric Arctic clouds were observed with two ground-based backscatter lidar systems (micro pulse lidar and Raman lidar) and with an airborne elastic lidar. In the time period of the ASTAR 2007 campaign, an increase in low-level cloud cover (cloud tops below 2.5 km) from 51% to 65% was observed above Ny-Ålesund. Four different case studies of lidar cloud observations are analyzed: With the ground-based Raman lidar, a layer of spherical particles was observed at an altitude of 2 km after the dissolution of a cloud. The layer probably consisted of small h…

Atmospheric ScienceASTARArktische Grenzschicht010504 meteorology & atmospheric sciencesCloud coverMischphasenwolkenAtmospheric sciences01 natural scienceslcsh:Chemistry010309 opticsAtmosphereTroposphere0103 physical sciences0105 earth and related environmental sciencesRemote sensingLidarCloud topOrographylcsh:QC1-999Boundary layerLidarlcsh:QD1-999Arctic13. Climate actionEnvironmental sciencelcsh:PhysicsWolkenphysik und Verkehrsmeteorologie
researchProduct

Influence of ice crystal shape on retrieval of cirrus optical thickness and effective radius: A case study

2009

Airborne measurements of spectral upwelling radiances (350A¢Â�Â�2200 nm) reflected by cirrus using the Spectral Modular Airborne Radiation measurement sysTem (SMART)-Albedometer were made over land and water surfaces. Based on these data, cloud optical thickness tau and effective radius Reff of the observed cirrus were retrieved. By using different crystal shape assumptions (hexagonal plates, solid and hollow columns, rough aggregates, planar and spatial rosettes, ice spheres, and a mixture of particle habits) in the retrieval, the influence of crystal shape on the retrieved tau and Reff was evaluated. With relative differences of up to 70%, the influence of particle habit on t is larger th…

Atmospheric ScienceMaterials scienceiceSoil SciencecirrusAquatic ScienceOceanographycrystalCrystalOpticsGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Physics::Atmospheric and Oceanic PhysicsEarth-Surface ProcessesWater Science and TechnologyEffective radiusLidarIce cloudEcologyIce crystalsFernerkundung der Atmosphärebusiness.industryAtmosphärische SpurenstoffePaleontologyForestryFalconGeophysicsLidarSpace and Planetary ScienceRadianceCIRCLE-2SPHERESCirrusbusinessJournal of Geophysical Research
researchProduct

Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches

2008

Abstract. Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength) spectral range whi…

Atmospheric Science010504 meteorology & atmospheric sciencesIce crystals01 natural sciencesPhysics::Geophysics010309 opticsArctic13. Climate actionPhase (matter)0103 physical sciencesCloud albedoSpectral slopeRadiative transferEnvironmental scienceAstrophysics::Earth and Planetary AstrophysicsSea ice concentrationAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesRemote sensingOptical properties of water and iceAtmospheric Chemistry and Physics
researchProduct

In-situ observations of young contrails – overview and selected results from the CONCERT campaign

2010

Lineshaped contrails were detected with the research aircraft Falcon during the CONCERT – CONtrail and Cirrus ExpeRimenT – campaign in October/November 2008. The Falcon was equipped with a set of instruments to measure the particle size distribution, shape, extinction and chemical composition as well as trace gas mixing ratios of sulfur dioxide (SO<sub>2</sub>), reactive nitrogen and halogen species (NO, NO<sub>y</sub>, HNO<sub>3</sub>, HONO, HCl), ozone (O<sub>3</sub>) and carbon monoxide (CO). During 12 mission flights over Europe, numerous contrails, cirrus clouds and a volcanic aerosol layer were probed at altitudes between 8.5 and 11.6 km…

Atmospheric ScienceOzoneMeteorologyicecirrusSO2medicine.disease_causeAtmospheric scienceslcsh:Chemistrychemistry.chemical_compoundAltitudetrace gasesddc:550medicineLife ScienceFlugabteilung OberpfaffenhofenStratosphereIce crystalsInstitut für AntriebstechnikAtmosphärische SpurenstoffecontrailSootlcsh:QC1-999JTrace gaschemistrylcsh:QD1-999Extinction (optical mineralogy)Cirruslcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

The evolution of microphysical and optical properties of an A380 contrail in the vortex phase

2012

A contrail from a large-body A380 aircraft at cruise in the humid upper troposphere has been probed with in-situ instruments onboard the DLR research aircraft Falcon. The contrail was sampled during 700 s measurement time at contrail ages of about 1–4 min. The contrail was in the vortex regime during which the primary wake vortices were sinking 270 m below the A380 flight level while the secondary wake remained above. Contrail properties were sampled separately in the primary wake at 90 and 115 s contrail age and nearly continously in the secondary wake at contrail ages from 70 s to 220 s. The scattering phase functions of the contrail particles were measured with a polar nephelometer. The …

Atmospheric Science010504 meteorology & atmospheric sciencesWakeAtmospheric sciences01 natural sciences010305 fluids & plasmaslcsh:ChemistryTroposphere0103 physical sciencesclimate impactWake turbulence0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereInstitut für Physik der AtmosphäreNephelometerIce crystalsAtmosphärische SpurenstoffeRadiative forcinglcsh:QC1-999FalconVortexlcsh:QD1-99913. Climate actionEnvironmental sciencePolarlcsh:Physics
researchProduct

Aircraft type influence on contrail properties

2013

The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of types A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in situ instruments on board DLR research aircraft Falcon. Within the 2 min-old contrails detected near ice saturation, we find similar effective diameters Deff (5.2–5.9 μm), but differences in particle number densities nice (162–235 cm−3) and…

Atmospheric ScienceMeteorologyParticle numberMicrophysicsAviationbusiness.industryAtmosphärische SpurenstoffeInitializationaircraft typecontrailAtmospheric scienceslcsh:QC1-999aircraft effectlcsh:ChemistryOn boardlcsh:QD1-999Fuel flowddc:550Environmental scienceCirrusRelative humiditybusinessclimatelcsh:PhysicsWolkenphysik und Verkehrsmeteorologie
researchProduct

Evidence of ice crystals at cloud top of Arctic boundary-layer mixed-phase clouds derived from airborne remote sensing

2009

Abstract. The vertical distribution of ice crystals in Arctic boundary-layer mixed-phase (ABM) clouds was investigated by airborne remote-sensing and in situ measurements during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign in March and April 2007. Information on the spectral absorption of solar radiation by ice and liquid water cloud particles is derived from airborne measurements of solar spectral radiation reflected by these clouds. It is shown by calculation of the vertical weighting function of the measurements that the observed absorption of solar radiation is dominated by the upper cloud layers (50% within 200 m from cloud top). This vertical weighti…

Atmospheric Science010504 meteorology & atmospheric sciencesIce crystalsBackscatterChemistryCloud topAtmospheric sciences01 natural sciencesPhysics::Geophysics010309 opticsBoundary layerArctic13. Climate actionLiquid water content0103 physical sciencesRadiative transferAbsorption (electromagnetic radiation)Astrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesRemote sensingAtmospheric Chemistry and Physics
researchProduct

Microphysical and optical properties of Arctic mixed-phase clouds. The 9 April 2007 case study.

2009

Abstract. Airborne measurements in Arctic boundary-layer stratocumulus were carried out near Spitsbergen on 9 April 2007 during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign. A unique set of co-located observations is used to describe the cloud properties, including detailed in situ cloud microphysical and radiation measurements along with airborne and co-located spaceborne remote sensing data (Lidar on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO] and radar on CloudSat satellites). The CALIPSO profiles evidence a cloud top temperature which varies between −24°C and −21°C. The in situ cloud observations reveal that the attenua…

Atmospheric ScienceASTARArktische Grenzschicht010504 meteorology & atmospheric sciencesBackscatterCloud coverCALIPSOMischphasenwolken010502 geochemistry & geophysicsAtmospheric sciences01 natural sciences010309 opticslcsh:Chemistry0103 physical sciencesPrecipitation0105 earth and related environmental sciencesLidarIce crystalsCloud toplcsh:QC1-999Lidarlcsh:QD1-999Arctic13. Climate actionExtinction (optical mineralogy)Environmental sciencelcsh:PhysicsWolkenphysik und VerkehrsmeteorologieAtmospheric Chemistry and Physics
researchProduct

Extinction and optical depth of contrails

2011

[1] One factor limiting the understanding of the climate impact from contrails and aircraft induced cloud modifications is the accurate determination of their optical depth. To this end, 14 contrails were sampled for 2756 s with instruments onboard the research aircraft Falcon during the CONCERT (CONtrail and Cirrus ExpeRimenT) campaign in November 2008. The young (<10 min old) contrails were produced by 9 commercial aircraft with weights of 47 to 508 t, among them the largest operating passenger aircraft, the Airbus A380. The contrails were observed at temperatures between 214 and 224 K and altitudes between 8.8 and 11.1 km. The measured mean in-contrail relative humidity with respect to i…

Effective radiusGeophysicsMeteorologyExtinction (optical mineralogy)Range (aeronautics)Radiative transferGeneral Earth and Planetary SciencesEnvironmental scienceCirrusRelative humidityRadiative forcingAtmospheric sciencesOptical depthGeophysical Research Letters
researchProduct

Properties of individual contrails: a compilation of observations and some comparisons

2017

International audience; Mean properties of individual contrails are characterized for a wide range of jet aircraft as a function of age during their life cycle from seconds to 11.5 h (7.4-18.7 km altitude, -88 to -31 °C ambient temperature), based on a compilation of about 230 previous in situ and remote sensing measurements. The airborne, satellite, and ground-based observations encompass exhaust contrails from jet aircraft from 1972 onwards, as well as a few older data for propeller aircraft. The contrails are characterized by mean ice particle sizes and concentrations, extinction, ice water content, optical depth, geometrical depth, and contrail width. Integral contrail properties includ…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologyreviewice010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesoptical depthlcsh:Chemistryremote sensingPhase (matter)ddc:551Relative humidityOptical depth0105 earth and related environmental sciencesJet (fluid)Institut für Physik der AtmosphäreIce crystalsFernerkundung der AtmosphäreAtmosphärische Spurenstoffecontraillcsh:QC1-999Warm frontdatain-situlcsh:QD1-999Extinction (optical mineralogy)[SDU]Sciences of the Universe [physics]Environmental scienceCirrusmeasurementslcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

Microphysical and radiative characterization of a subvisible midlevel Arctic ice cluod by airborne observations - a case study

2009

During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign, which was conducted in March and April 2007, an optically thin ice cloud was observed south of Svalbard at around 3 km altitude. The microphysical and radiative properties of this particular subvisible midlevel cloud were investigated with complementary remote sensing and in situ instruments. Collocated airborne lidar remote sensing and spectral solar radiation measurements were performed at a flight altitude of 2300 m below the cloud base. Under almost stationary atmospheric conditions, the same subvisible midlevel cloud was probed with various in situ sensors roughly 30 min later. &lt;br&gt;&lt;br&gt; …

Atmospheric Science010504 meteorology & atmospheric sciencesASTARArktische GrenzschichtMischphasenwolken[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/MeteorologyAtmospheric sciences01 natural sciences010309 opticslcsh:Chemistry0103 physical sciencesRadiative transferPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesRemote sensing[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]geographyIce cloudLidargeography.geographical_feature_categoryIce crystalsNephelometerCloud topArctic ice packlcsh:QC1-999Lidarlcsh:QD1-99913. Climate actionCloud albedoEnvironmental scienceAstrophysics::Earth and Planetary Astrophysicslcsh:PhysicsWolkenphysik und Verkehrsmeteorologie
researchProduct