0000000000326441

AUTHOR

Jean Marc Riedinger

Can absolute polycythaemia be identified without measurement of the red cell mass?

research product

Improved synthesis and in vitro evaluation of the cytotoxic profile of oxysterols oxidized at C4 (4α- and 4β-hydroxycholesterol) and C7 (7-ketocholesterol, 7α- and 7β-hydroxycholesterol) on cells of the central nervous system

Whereas the biological activities of oxysterols oxidized at C7 (7-ketocholesterol (7KC), 7β-hydroxycholesterol (7β-OHC), 7α-hydroxycholesterol (7α-OHC)) are well documented, those of oxysterols oxidized at C4 (4β-hydroxycholesterol (4β-OHC), 4α-hydroxycholesterol (4α-OHC)) are not well known, especially on the cells of the central nervous system. Therefore, an improved methodology has been validated for 4β-OHC and 4α-OHC synthesis, and the effects on cell viability and cell growth of these molecules were studied on immortalized, tumoral and normal brain cells (158N, C6 and SK-N-BE cells, and mixed primary cultures of astrocytes and oligodendrocytes). Whereas inhibition of cell growth with 7…

research product

Induction of oxiapoptophagy, a mixed mode of cell death associated with oxidative stress, apoptosis and autophagy, on 7-ketocholesterol-treated 158N murine oligodendrocytes: impairment by α-tocopherol.

7-Ketocholesterol (7KC) has been suggested to induce a complex mode of cell death on monocytic cells: oxiapoptophagy (OXIdation, APOPTOsis, and autoPHAGY) (Monier et al. (2003) [12]). The aim of the present study, realized on 158N murine oligodendrocytes, was to bring new evidence on this mixed form of cell death. On 158N cells, 7KC induces an overproduction of reactive oxygen species (ROS) revealed by dihydroethidium staining, a loss of transmembrane mitochondrial potential measured with DiOC6(3), caspase-3 activation, and condensation and/or fragmentation of the nuclei which are typical criteria of oxidative stress and apoptosis. Moreover, 7KC enhances cytoplamic membrane permeability to …

research product