0000000000326637

AUTHOR

M.n. Ferreira

showing 4 related works from this author

Gluon mass scale through nonlinearities and vertex interplay

2019

We present a novel analysis of the gluon gap equation, where its full nonlinear structure is duly taken into account. In particular, while in previous treatments the linearization of this homogeneous integral equation introduced an indeterminacy in the scale of the corresponding mass, the current approach determines it uniquely, once the value of the gauge coupling at a given renormalization point is used as input. A crucial ingredient for this construction is the "kinetic term" of the gluon propagator, whose form is not obtained from the complicated equation governing its evolution, but is rather approximated by suitable initial {\it Ans\"atze}, which are subsequently improved by means of …

High Energy Physics - TheoryPhysicsQuark010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)PropagatorFOS: Physical sciences01 natural sciencesIntegral equationVertex (geometry)GluonRenormalizationHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)LinearizationLattice (order)0103 physical sciences010306 general physicsMathematical physics
researchProduct

Nonperturbative structure of the ghost-gluon kernel

2019

The ghost-gluon scattering kernel is a special correlation function that is intimately connected with two fundamental vertices of the gauge sector of QCD: the ghost-gluon vertex, which may be obtained from it through suitable contraction, and the three-gluon vertex, whose Slavnov-Taylor identity contains that kernel as one of its main ingredients. In this work we present a detailed nonperturbative study of the five form factors comprising it, using as starting point the `one-loop dressed' approximation of the dynamical equations governing their evolution. The analysis is carried out for arbitrary Euclidean momenta, and makes extensive use of the gluon propagator and the ghost dressing funct…

High Energy Physics - TheoryQuantum chromodynamicsPhysicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesPropagatorGluonVertex (geometry)High Energy Physics - PhenomenologyTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeHigh Energy Physics - Theory (hep-th)Lattice (order)Euclidean geometryEquations for a falling bodyTwo-formPhysical Review
researchProduct

Infrared facets of the three-gluon vertex

2021

We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The em…

High Energy Physics - TheoryNuclear and High Energy PhysicsQC1-999High Energy Physics::LatticeFOS: Physical sciencesThree-gluon vertexLattice QCD01 natural sciencesMomentumTheoretical physicsHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)SingularitySchwinger-Dyson equations0103 physical sciencesTensor010306 general physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsPhysicsHigh Energy Physics - Lattice (hep-lat)Lattice QCDQCDHigh Energy Physics - PhenomenologyLattice (module)High Energy Physics - Theory (hep-th)Vertex (curve)Constant (mathematics)Physics Letters B
researchProduct

Ghost dynamics in the soft gluon limit

2021

We present a detailed study of the dynamics associated with the ghost sector of quenched QCD in the Landau gauge, where the relevant dynamical equations are supplemented with key inputs originating from large-volume lattice simulations. In particular, we solve the coupled system of Schwinger-Dyson equations that governs the evolution of the ghost dressing function and the ghost-gluon vertex, using as input for the gluon propagator lattice data that have been cured from volume and discretization artifacts. In addition, we explore the soft gluon limit of the same system, employing recent lattice data for the three-gluon vertex that enters in one of the diagrams defining the Schwinger-Dyson eq…

Quantum chromodynamicsPhysicsHigh Energy Physics - TheoryDiscretizationHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)PropagatorFOS: Physical sciencesGluonLattice (module)High Energy Physics - PhenomenologyHigh Energy Physics::TheoryHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Vertex (curve)Limit (mathematics)Equations for a falling bodyMathematical physics
researchProduct