0000000000326723

AUTHOR

Paulina Rocha-morán

showing 2 related works from this author

Minimal 3-loop neutrino mass models and charged lepton flavor violation

2020

We study charged lepton flavor violation for the three most popular 3-loop Majorana neutrino mass models. We call these models "minimal" since their particle content correspond to the minimal sets for which genuine 3-loop models can be constructed. In all the three minimal models the neutrino mass matrix is proportional to some powers of Standard Model lepton masses, providing additional suppression factors on top of the expected loop suppression. To correctly explain neutrino masses, therefore large Yukawa couplings are needed in these models. We calculate charged lepton flavor violating observables and find that the three minimal models survive the current constraints only in very narrow …

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyYukawa potentialFOS: Physical sciencesObservableMinimal modelsMass matrix01 natural sciencesHigh Energy Physics - PhenomenologyMAJORANAStandard Model (mathematical formulation)High Energy Physics - Phenomenology (hep-ph)Beyond Standard Model0103 physical scienceslcsh:QC770-798Neutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityHigh Energy Physics::ExperimentNeutrino010306 general physicsLepton
researchProduct

Lepton flavor violation in a Z′ model for the b→s anomalies

2019

In recent years, several observables associated to semileptonic $b \to s$ processes have been found to depart from their predicted values in the Standard Model, including a few tantalizing hints of lepton flavor universality violation. In this work we consider an existing model with a massive $Z^\prime$ boson that addresses the anomalies in $b \to s$ transitions and extend it with a non-trivial embedding of neutrino masses. We analyze lepton flavor violating effects, induced by the non-universal interaction associated to the $b \to s$ anomalies and by the new physics associated to the neutrino mass generation, and determine the expected ranges for the most relevant observables.

PhysicsParticle physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyMass generationHigh Energy Physics::ExperimentObservableNeutrinoFlavorLeptonUniversality (dynamical systems)BosonPhysical Review D
researchProduct