0000000000326770

AUTHOR

Vincenzo Vespri

showing 1 related works from this author

Hölder stability for Serrin’s overdetermined problem

2015

In a bounded domain \(\varOmega \), we consider a positive solution of the problem \(\Delta u+f(u)=0\) in \(\varOmega \), \(u=0\) on \(\partial \varOmega \), where \(f:\mathbb {R}\rightarrow \mathbb {R}\) is a locally Lipschitz continuous function. Under sufficient conditions on \(\varOmega \) (for instance, if \(\varOmega \) is convex), we show that \(\partial \varOmega \) is contained in a spherical annulus of radii \(r_i 0\) and \(\tau \in (0,1]\). Here, \([u_\nu ]_{\partial \varOmega }\) is the Lipschitz seminorm on \(\partial \varOmega \) of the normal derivative of u. This result improves to Holder stability the logarithmic estimate obtained in Aftalion et al. (Adv Differ Equ 4:907–93…

Applied Mathematics010102 general mathematicsMathematical analysisRegular polygonSerrin’s problemFunction (mathematics)Directional derivativeLipschitz continuity01 natural sciencesDomain (mathematical analysis)010101 applied mathematicsOverdetermined systemCombinatoricsBounded functionOverdetermined problemHarnack’s inequalityStationary surface0101 mathematicsStabilityMethod of moving planeHarnack's inequalityMathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct