0000000000326960

AUTHOR

Monica F. Bugallo

0000-0003-2963-1474

Heretical Mutiple Importance Sampling

Multiple Importance Sampling (MIS) methods approximate moments of complicated distributions by drawing samples from a set of proposal distributions. Several ways to compute the importance weights assigned to each sample have been recently proposed, with the so-called deterministic mixture (DM) weights providing the best performance in terms of variance, at the expense of an increase in the computational cost. A recent work has shown that it is possible to achieve a trade-off between variance reduction and computational effort by performing an a priori random clustering of the proposals (partial DM algorithm). In this paper, we propose a novel "heretical" MIS framework, where the clustering …

research product

A new strategy for effective learning in population Monte Carlo sampling

In this work, we focus on advancing the theory and practice of a class of Monte Carlo methods, population Monte Carlo (PMC) sampling, for dealing with inference problems with static parameters. We devise a new method for efficient adaptive learning from past samples and weights to construct improved proposal functions. It is based on assuming that, at each iteration, there is an intermediate target and that this target is gradually getting closer to the true one. Computer simulations show and confirm the improvement of the proposed strategy compared to the traditional PMC method on a simple considered scenario.

research product

Adaptive Importance Sampling: The past, the present, and the future

A fundamental problem in signal processing is the estimation of unknown parameters or functions from noisy observations. Important examples include localization of objects in wireless sensor networks [1] and the Internet of Things [2]; multiple source reconstruction from electroencephalograms [3]; estimation of power spectral density for speech enhancement [4]; or inference in genomic signal processing [5]. Within the Bayesian signal processing framework, these problems are addressed by constructing posterior probability distributions of the unknowns. The posteriors combine optimally all of the information about the unknowns in the observations with the information that is present in their …

research product

Population Monte Carlo Schemes with Reduced Path Degeneracy

Population Monte Carlo (PMC) algorithms are versatile adaptive tools for approximating moments of complicated distributions. A common problem of PMC algorithms is the so-called path degeneracy; the diversity in the adaptation is endangered due to the resampling step. In this paper we focus on novel population Monte Carlo schemes that present enhanced diversity, compared to the standard approach, while keeping the same implementation structure (sample generation, weighting and resampling). The new schemes combine different weighting and resampling strategies to reduce the path degeneracy and achieve a higher performance at the cost of additional low computational complexity cost. Computer si…

research product

Efficient linear fusion of partial estimators

Abstract Many signal processing applications require performing statistical inference on large datasets, where computational and/or memory restrictions become an issue. In this big data setting, computing an exact global centralized estimator is often either unfeasible or impractical. Hence, several authors have considered distributed inference approaches, where the data are divided among multiple workers (cores, machines or a combination of both). The computations are then performed in parallel and the resulting partial estimators are finally combined to approximate the intractable global estimator. In this paper, we focus on the scenario where no communication exists among the workers, de…

research product