0000000000326961

AUTHOR

Victor Elvira

Heretical Mutiple Importance Sampling

Multiple Importance Sampling (MIS) methods approximate moments of complicated distributions by drawing samples from a set of proposal distributions. Several ways to compute the importance weights assigned to each sample have been recently proposed, with the so-called deterministic mixture (DM) weights providing the best performance in terms of variance, at the expense of an increase in the computational cost. A recent work has shown that it is possible to achieve a trade-off between variance reduction and computational effort by performing an a priori random clustering of the proposals (partial DM algorithm). In this paper, we propose a novel "heretical" MIS framework, where the clustering …

research product

A new strategy for effective learning in population Monte Carlo sampling

In this work, we focus on advancing the theory and practice of a class of Monte Carlo methods, population Monte Carlo (PMC) sampling, for dealing with inference problems with static parameters. We devise a new method for efficient adaptive learning from past samples and weights to construct improved proposal functions. It is based on assuming that, at each iteration, there is an intermediate target and that this target is gradually getting closer to the true one. Computer simulations show and confirm the improvement of the proposed strategy compared to the traditional PMC method on a simple considered scenario.

research product

Adaptive Importance Sampling: The past, the present, and the future

A fundamental problem in signal processing is the estimation of unknown parameters or functions from noisy observations. Important examples include localization of objects in wireless sensor networks [1] and the Internet of Things [2]; multiple source reconstruction from electroencephalograms [3]; estimation of power spectral density for speech enhancement [4]; or inference in genomic signal processing [5]. Within the Bayesian signal processing framework, these problems are addressed by constructing posterior probability distributions of the unknowns. The posteriors combine optimally all of the information about the unknowns in the observations with the information that is present in their …

research product

Particle Group Metropolis Methods for Tracking the Leaf Area Index

Monte Carlo (MC) algorithms are widely used for Bayesian inference in statistics, signal processing, and machine learning. In this work, we introduce an Markov Chain Monte Carlo (MCMC) technique driven by a particle filter. The resulting scheme is a generalization of the so-called Particle Metropolis-Hastings (PMH) method, where a suitable Markov chain of sets of weighted samples is generated. We also introduce a marginal version for the goal of jointly inferring dynamic and static variables. The proposed algorithms outperform the corresponding standard PMH schemes, as shown by numerical experiments.

research product

Adaptive Population Importance Samplers: A General Perspective

Importance sampling (IS) is a well-known Monte Carlo method, widely used to approximate a distribution of interest using a random measure composed of a set of weighted samples generated from another proposal density. Since the performance of the algorithm depends on the mismatch between the target and the proposal densities, a set of proposals is often iteratively adapted in order to reduce the variance of the resulting estimator. In this paper, we review several well-known adaptive population importance samplers, providing a unified common framework and classifying them according to the nature of their estimation and adaptive procedures. Furthermore, we interpret the underlying motivation …

research product

Recycling Gibbs sampling

Gibbs sampling is a well-known Markov chain Monte Carlo (MCMC) algorithm, extensively used in signal processing, machine learning and statistics. The key point for the successful application of the Gibbs sampler is the ability to draw samples from the full-conditional probability density functions efficiently. In the general case this is not possible, so in order to speed up the convergence of the chain, it is required to generate auxiliary samples. However, such intermediate information is finally disregarded. In this work, we show that these auxiliary samples can be recycled within the Gibbs estimators, improving their efficiency with no extra cost. Theoretical and exhaustive numerical co…

research product

Compressed Particle Methods for Expensive Models With Application in Astronomy and Remote Sensing

In many inference problems, the evaluation of complex and costly models is often required. In this context, Bayesian methods have become very popular in several fields over the last years, in order to obtain parameter inversion, model selection or uncertainty quantification. Bayesian inference requires the approximation of complicated integrals involving (often costly) posterior distributions. Generally, this approximation is obtained by means of Monte Carlo (MC) methods. In order to reduce the computational cost of the corresponding technique, surrogate models (also called emulators) are often employed. Another alternative approach is the so-called Approximate Bayesian Computation (ABC) sc…

research product

Population Monte Carlo Schemes with Reduced Path Degeneracy

Population Monte Carlo (PMC) algorithms are versatile adaptive tools for approximating moments of complicated distributions. A common problem of PMC algorithms is the so-called path degeneracy; the diversity in the adaptation is endangered due to the resampling step. In this paper we focus on novel population Monte Carlo schemes that present enhanced diversity, compared to the standard approach, while keeping the same implementation structure (sample generation, weighting and resampling). The new schemes combine different weighting and resampling strategies to reduce the path degeneracy and achieve a higher performance at the cost of additional low computational complexity cost. Computer si…

research product

The Recycling Gibbs sampler for efficient learning

Monte Carlo methods are essential tools for Bayesian inference. Gibbs sampling is a well-known Markov chain Monte Carlo (MCMC) algorithm, extensively used in signal processing, machine learning, and statistics, employed to draw samples from complicated high-dimensional posterior distributions. The key point for the successful application of the Gibbs sampler is the ability to draw efficiently samples from the full-conditional probability density functions. Since in the general case this is not possible, in order to speed up the convergence of the chain, it is required to generate auxiliary samples whose information is eventually disregarded. In this work, we show that these auxiliary sample…

research product

Metropolis Sampling

Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms are a well-known class of MC methods which generate a Markov chain with the desired invariant distribution. In this document, we focus on the Metropolis-Hastings (MH) sampler, which can be considered as the atom of the MCMC techniques, introducing the basic notions and different properties. We describe in details all the elements involved in the MH algorithm and the most relevant variants. Several improvements and recent extensions proposed in the literature are also briefly discussed, providing a quick but exhaustive overvie…

research product

Anti-tempered Layered Adaptive Importance Sampling

Monte Carlo (MC) methods are widely used for Bayesian inference in signal processing, machine learning and statistics. In this work, we introduce an adaptive importance sampler which mixes together the benefits of the Importance Sampling (IS) and Markov Chain Monte Carlo (MCMC) approaches. Different parallel MCMC chains provide the location parameters of the proposal probability density functions (pdfs) used in an IS method. The MCMC algorithms consider a tempered version of the posterior distribution as invariant density. We also provide an exhaustive theoretical support explaining why, in the presented technique, even an anti-tempering strategy (reducing the scaling of the posterior) can …

research product

Group Importance Sampling for particle filtering and MCMC

Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discus…

research product

Efficient linear fusion of partial estimators

Abstract Many signal processing applications require performing statistical inference on large datasets, where computational and/or memory restrictions become an issue. In this big data setting, computing an exact global centralized estimator is often either unfeasible or impractical. Hence, several authors have considered distributed inference approaches, where the data are divided among multiple workers (cores, machines or a combination of both). The computations are then performed in parallel and the resulting partial estimators are finally combined to approximate the intractable global estimator. In this paper, we focus on the scenario where no communication exists among the workers, de…

research product

Distributed Particle Metropolis-Hastings Schemes

We introduce a Particle Metropolis-Hastings algorithm driven by several parallel particle filters. The communication with the central node requires the transmission of only a set of weighted samples, one per filter. Furthermore, the marginal version of the previous scheme, called Distributed Particle Marginal Metropolis-Hastings (DPMMH) method, is also presented. DPMMH can be used for making inference on both a dynamical and static variable of interest. The ergodicity is guaranteed, and numerical simulations show the advantages of the novel schemes.

research product

Group Metropolis Sampling

Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. Two well-known class of MC methods are the Importance Sampling (IS) techniques and the Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce the Group Importance Sampling (GIS) framework where different sets of weighted samples are properly summarized with one summary particle and one summary weight. GIS facilitates the design of novel efficient MC techniques. For instance, we present the Group Metropolis Sampling (GMS) algorithm which produces a Markov chain of sets of weighted samples. GMS in general outperforms other multiple try schemes…

research product