Decay estimates for time-fractional and other non-local in time subdiffusion equations in R^d
We prove optimal estimates for the decay in time of solutions to a rather general class of non-local in time subdiffusion equations in R d . An important special case is the timefractional diffusion equation, which has seen much interest during the last years, mostly due to its applications in the modeling of anomalous diffusion processes. We follow three different approaches and techniques to study this particular case: (A) estimates based on the fundamental solution and Young’s inequality, (B) Fourier multiplier methods, and (C) the energy method. It turns out that the decay behaviour is markedly different from the heat equation case, in particular there occurs a critical dimension phenom…