0000000000328419

AUTHOR

Paul G. Dennis

Corrigendum to “Soil fungal community composition does not alter along a latitudinal gradient through the maritime and sub-Antarctic” Fungal Ecology (2012) 5 (4) 403–408

research product

Soil fungal community composition does not alter along a latitudinal gradient through the maritime and sub-Antarctic

We investigated the relationships between fungal community composition, latitude and a range of physicochemical parameters in 58 soils sampled from a 2370 km latitudinal gradient between South Georgia (54 S, 38 W) in the sub-Antarctic and Mars Oasis (72 S, 68 W) on Alexander Island in the southern maritime Antarctic. Our study, which is based on approximately ten times the number of samples used in previous similar studies, indicates that latitude and its associated environmental parameters are not related to fungal community composition. Significant changes in the composition of soil fungal communities were observed in relation to gradients of the ratio of total organic carbon to nitrogen,…

research product

Biogeochemical responses to nutrient, moisture and temperature manipulations of soil from Signy Island, South Orkney Islands in the Maritime Antarctic

AbstractWe have investigated how the microbially-driven processes of carbon (C) mineralization (respiration) and nitrogen (N) mineralization/immobilization in a soil from the northern Maritime Antarctic respond to differences in water availability (20% and 80% water-holding capacity) and temperature (5°C and 15°C) in the presence and absence of different organic substrates (2 mg C as either glucose, glycine or tryptone soy broth (TSB) powder (a complex microbial growth medium)) in a controlled laboratory experiment over 175 days. Soil respiration and N mineralization/immobilization in the presence of a C-rich substrate (glucose) increased with increases in water and temperature. These facto…

research product

Key Biochemical Attributes to Assess Soil Ecosystem Sustainability

Soil is not a renewable resource, at least within the human timescale. In general, any anthropic exploitation of soils tends to disturb or divert them from a more “natural” development which, by definition, represents the best comparison term for measuring the relative shift from soil sustainability. The continuous degradation of soil health and quality due to abuse of land potentiality or intensive management occurs since decades. Soil microbiota, being ‘the biological engine of the Earth’, provides pivotal services in the soil ecosystem functioning. Hence, management practices protecting soil microbial diversity and resilience, should be pursued. Besides, any abnormal change in rate of in…

research product

Responses to increases in temperature of heterotrophic micro-organisms in soils from the maritime Antarctic

Understanding relationships between environmental changes and soil microbial respiration is critical for predicting changes in soil organic carbon (SOC) fluxes and content. The maritime Antarctic is experiencing one of the fastest rates of warming in the world and is therefore a key location to examine the effect of temperature on SOC mineralization by the respiration of soil micro-organisms. However, depletion of the labile substrates at higher temperatures relative to the total SOC and greater temperature sensitivity of recalcitrant components of the SOC confound simple interpretations of the effects of warming. We have addressed these issues by testing the hypothesis that respiration by …

research product