0000000000328744
AUTHOR
Bruce Palka
Boundary angles, cusps and conformal mappings
Let f be a conformal mapping of a bounded Jordan domain D in the complex plane onto the unit disk . This paper examines the consequences for the local geometry of D near a boundary point z 0 of the mapping f-or, to be more precise, of the homeomorphic extension of this mapping to the closure of D—satisfying a Holder condition at z 0 or, alternatively, of its inverse satisfying a Holder condition at the point f(z 0). In particular, the compatibility of Holder conditions with the presence of cusps in the boundary of D is investigated.
Extremal length and Hölder continuity of conformal mappings
Asymptotic values and hölder continuity of quasiconformal mappings
Lipschitz conditions,b-arcwise connectedness and conformal mappings
Cone conditions and quasiconformal mappings
Let f be a quasiconformal mapping of the open unit ball B n = {x ∈ R n : | x | < l× in euclidean n-space R n onto a bounded domain D in that space. For dimension n= 2 the literature of geometric function theory abounds in results that correlate distinctive geometric properties of the domain D with special behavior, be it qualitative or quantitative, on the part of f or its inverse. There is a more modest, albeit growing, body of work that attempts to duplicate in dimensions three and above, where far fewer analytical tools are at a researcher’s disposal, some of the successes achieved in the plane along such lines. In this paper we contribute to that higher dimensional theory some observati…