0000000000328775
AUTHOR
Peng Fu
Metallic subnanometer porous silicon: A theoretical prediction
In the present work, T-Si, a silicon-based counterpart of T-carbon, has been designed with the aid of density functional theory (DFT) calculations. Its stability has been fully confirmed from energetic, mechanical, lattice dynamic, and thermodynamic aspects. Due to the space extrusion, the delocalized electrons on the ${\mathrm{Si}}_{4}$ tetrahedrons are squeezed onto the inter-tetrahedron $\mathrm{Si}\ensuremath{-}\mathrm{Si}$ bonds, which therefore leads T-Si to be metallic. Furthermore, the electronic conductivity of this new material has also been predicted and discussed in this work. This new silicon allotrope with a low density of $0.869\mathrm{g}/{\mathrm{cm}}^{3}$ can even floats on…
Theoretical study on hydrogen storage capacity of expanded h-BN systems
In this work, the hydrogen storage capacity of the expanded hexagonal Boron Nitride (eh-BN) systems has been presented. We have employed a new equation of state (EOS) for hydrogen gas to figure out the hydrogen density distribution profiles in the eh-BN systems. In this regard, the environmental conditions (i.e., temperature and pressure) are considered in the prediction procedure using DFT single point calculations. The eh-BN systems with different layer spacings are studied by PBE method with consideration of the long range dispersion corrections. On account of the in-plane polar bonds, a series of adsorption positions are considered. Additionally, the adsorption energy and hydrogen densi…
A novel T-C3N and seawater desalination
A structurally stable stacked multilayer carbonitride is predicted with the aid of ab initio calculations. This carbonitride consists of C3N tetrahedra, and is similar to T-carbon and thus named T-C3N. Its 2-dimensional (2D) monolayer is also carefully investigated in this work. The studies on electronic properties reveal that bulk and 2D T-C3N are insulators with a 5.542 eV indirect band gap and a 5.741 eV direct band gap, respectively. However, the monolayer T-C3N exhibits an excellent uniform porosity. Its 5.50 A pore size is perfect for water nanofiltration. The adsorption and permeation of water molecules on the monolayer T-C3N are investigated. Its promising potential application in h…
From determination of the fugacity coefficients to estimation of hydrogen storage capacity: A convenient theoretical method
Abstract The equation of state (EOS) from virial expansion (VE) is used in this work to pave the way for determining the fugacity coefficients of the hydrogen fluid at arbitrary temperature and pressure. The fugacity coefficients from our VE method have more physical meanings than the empirical values. In this way, the hydrogen storage capacity of a novel material model can be estimated by using few density functional theory (DFT) calculations with the aid of a continuum model. The efficient continuum model can provide a more accurate estimation of the hydrogen storage capacity than the pure DFT calculations. Furthermore, the expensive grand canonical ensemble (μNT) simulations combining wi…