0000000000328789

AUTHOR

Simeon Reich

showing 4 related works from this author

The Ptolemy and Zbăganu constants of normed spaces

2010

Abstract In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It is known that for each normed space ( X , ‖ ⋅ ‖ ) , there exists a constant C such that for any w , x , y , z ∈ X , we have ‖ x − y ‖ ‖ z − w ‖ ≤ C ( ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ ) . The smallest such C is called the Ptolemy constant of X and is denoted by C P ( X ) . We study the relationships between this constant and the geometry of the space X , and hence with metric fix…

CombinatoricsInner product spaceApplied MathematicsProduct (mathematics)Mathematical analysisBanach spaceFixed-point theoremSpace (mathematics)Constant (mathematics)Fixed-point propertyAnalysisNormed vector spaceMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Domains of accretive operators in Banach spaces

2016

LetD(A)be the domain of anm-accretive operatorAon a Banach spaceE. We provide sufficient conditions for the closure ofD(A)to be convex and forD(A)to coincide withEitself. Several related results and pertinent examples are also included.

Discrete mathematicsApproximation propertyGeneral Mathematics010102 general mathematicsBanach spaceClosure (topology)Finite-rank operatorResolvent formalism01 natural sciencesDomain (mathematical analysis)010101 applied mathematicsOperator (computer programming)0101 mathematicsC0-semigroupMathematicsProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

INTEGRAL SOLUTIONS TO A CLASS OF NONLOCAL EVOLUTION EQUATIONS

2010

We study the existence of integral solutions to a class of nonlinear evolution equations of the form [Formula: see text] where A : D(A) ⊆ X → 2X is an m-accretive operator on a Banach space X, and f : [0, T] × X → X and [Formula: see text] are given functions. We obtain sufficient conditions for this problem to have a unique integral solution.

Cauchy problemClass (set theory)Pure mathematicsApplied MathematicsGeneral MathematicsOperator (physics)Mathematical analysisBanach spaceIntegral solutionFixed pointNonlinear evolutionFourier integral operatorMathematicsCommunications in Contemporary Mathematics
researchProduct

Weak convergence theorems for asymptotically nonexpansive mappings and semigroups

2001

Convex hullDiscrete mathematicsWeak convergenceSemigroupApplied MathematicsBanach spaceErgodic theoryFixed-point theoremUniformly convex spaceFixed pointAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct