0000000000328904
AUTHOR
Julia Krez
Thermoeletric Heusler Compounds
Thermoelectric converters for power generation aim at reducing CO\(_2\) emission via the conversion of a part of the low-grade waste heat generated by engines, industrial furnaces, gas pipes, etc. to electricity. The recovery of waste heat from the exhaust of an automotive engine, in particular, is an attractive, albeit not very efficient way for reduction of fuel consumption. Thermoelectric converters with high overall efficiency convert heat directly into electricity without moving parts and, thus, not only decrease our reliance on fossil fuels but also actively counteract global warming. State-of-the-art converters are simply too inefficient to be economic, partly due to expensive elemen…
Optimization of the carrier concentration in phase-separated half-Heusler compounds
Inspired by the promising thermoelectric properties of phase-separated half-Heusler materials, we investigated the influence of electron doping in the n-type Ti_(0.3−x)Zr_(0.35)Hf_(0.35)NiSn compound. The addition of Nb to this compound led to a significant increase in its electrical conductivity, and shifted the maximum Seebeck coefficient to higher temperatures owing to the suppression of intrinsic carriers. This resulted in an enhancement of both the power factor α^2σ and figure of merit, zT. The applicability of an average effective mass model revealed the optimized electron properties for samples containing Nb. There is evidence in the literature that the average effective mass model i…
Long-term stability of phase-separated Half-Heusler compounds
Half-Heusler (HH) compounds have shown high Figure of merits up to 1.5. The key to these high thermoelectric efficiencies is an intrinsic phase separation, which occurs in multicomponent Half-Heusler compounds and leads to an significantly reduction of the thermal conductivity. For commercial applications, compatible n- and p-type materials are essential and their thermal stability under operating conditions, e.g. for an automotive up to 873 K, needs to be guaranteed. For the first time, the long-term stability of n- and p-type HH materials is proved. We investigated HH materials based on the Ti0.3Zr0.35Hf0.35NiSn-system after 500 cycles (1700 h) from 373 to 873 K. Both compounds exhibit a …
Long-term stability of phase-separated half-Heusler compounds
Half-Heusler (HH) compounds have shown high figure of merit up to 1.5. Here, we address the long-term stability of n- and p-type HH materials. For this purpose, we investigated HH materials based on the Ti0.3Zr0.35Hf0.35NiSn-system after 500 cycles (1700 h) from 373 to 873 K. Both compounds exhibit a maximum Seebeck coefficient of |α|≈ 210 μV K(-1) and a phase separation into two HH phases. The dendritic microstructure is temperature resistant and upon cycling the changes in the microstructure are so marginal that the low thermal conductivity values (κ4 W m(-1) K(-1)) could be maintained. Our results emphasize that phase-separated HH compounds are suitable low cost materials and can lead to…