MuLiMs-MCoMPAs: A Novel Multiplatform Framework to Compute Tensor Algebra-Based Three-Dimensional Protein Descriptors
This report introduces the MuLiMs-MCoMPAs software (acronym for Multi-Linear Maps based on N-Metric and Contact Matrices of 3D Protein and Amino-acid weightings), designed to compute tensor-based 3D protein structural descriptors by applying two- and three-linear algebraic forms. Moreover, these descriptors contemplate generalizing components such as novel 3D protein structural representations, (dis)similarity metrics, and multimetrics to extract geometrical related information between two and three amino acids, weighting schemes based on amino acid properties, matrix normalization procedures that consider simple-stochastic and mutual probability transformations, topological and geometrical…
QuBiLS-MIDAS: A parallel free-software for molecular descriptors computation based on multilinear algebraic maps
The present report introduces the QuBiLS-MIDAS software belonging to the ToMoCoMD-CARDD suite for the calculation of three-dimensional molecular descriptors (MDs) based on the two-linear (bilinear), three-linear, and four-linear (multilinear or N-linear) algebraic forms. Thus, it is unique software that computes these tensor-based indices. These descriptors, establish relations for two, three, and four atoms by using several (dis-)similarity metrics or multimetrics, matrix transformations, cutoffs, local calculations and aggregation operators. The theoretical background of these N-linear indices is also presented. The QuBiLS-MIDAS software was developed in the Java programming language and …
LEGO-based generalized set of two linear algebraic 3D bio-macro-molecular descriptors: Theory and validation by QSARs
Abstract Novel 3D protein descriptors based on bilinear, quadratic and linear algebraic maps in R n are proposed. The latter employs the kth 2-tuple (dis) similarity matrix to codify information related to covalent and non-covalent interactions in these biopolymers. The calculation of the inter-amino acid distances is generalized by using several dis-similarity coefficients, where normalization procedures based on the simple stochastic and mutual probability schemes are applied. A new local-fragment approach based on amino acid-types and amino acid-groups is proposed to characterize regions of interest in proteins. Topological and geometric macromolecular cutoffs are defined using local and…
Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes
In the present study, we introduce novel 3D protein descriptors based on the bilinear algebraic form in the ℝn space on the coulombic matrix. For the calculation of these descriptors, macromolecular vectors belonging to ℝn space, whose components represent certain amino acid side-chain properties, were used as weighting schemes. Generalization approaches for the calculation of inter-amino acidic residue spatial distances based on Minkowski metrics are proposed. The simple- and double-stochastic schemes were defined as approaches to normalize the coulombic matrix. The local-fragment indices for both amino acid-types and amino acid-groups are presented in order to permit characterizing fragme…