0000000000329118

AUTHOR

Frank Koentgen

showing 2 related works from this author

Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy

2016

Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confi…

0301 basic medicineAutophagy-Related ProteinsMiceProgranulinsGanglia SpinalDorsal root gangliaGranulinsPain MeasurementCD11b AntigenMicrofilament ProteinsChronic painSciatic nerve injuryCysteine Endopeptidasesmedicine.anatomical_structureNociceptionNeurologyNeuropathic painIntercellular Signaling Peptides and Proteinsmedicine.symptomMicrotubule-Associated ProteinsNerve injuryProgranulinSensory Receptor CellsGreen Fluorescent ProteinsPainMice Transgeniclcsh:RC321-571ATG1203 medical and health sciencesLysosomal-Associated Membrane Protein 1mental disordersmedicineAutophagyAnimalslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryActivating Transcription Factor 3Sensory neuronbusiness.industryAutophagyCalcium-Binding ProteinsNerve injurymedicine.diseaseSensory neuronMice Inbred C57BLDisease Models Animal030104 developmental biologyGene OntologyNeuralgiabusinessApoptosis Regulatory ProteinsNeuroscienceNeurobiology of Disease
researchProduct

Effects of Presynaptic Mutations on a Postsynaptic Cacna1s Calcium Channel Colocalized with mGluR6 at Mouse Photoreceptor Ribbon Synapses

2008

Purpose Photoreceptor ribbon synapses translate light-dependent changes of membrane potential into graded transmitter release via L-type voltage-dependent calcium channel (VDCC) activity. Functional abnormalities (e.g., a reduced electroretinogram b-wave), arising from mutations of presynaptic proteins, such as Bassoon and the VDCCalpha1 subunit Cacna1f, have been shown to altered transmitter release. L-type VDCCalpha1 subtype expression in wild-type and mutant mice was examined, to investigate the underlying pathologic mechanism. Methods Two antisera against Cacna1f, and a Cacna1f mouse mutant (Cacna1fDeltaEx14-17) were generated. Immunocytochemistry for L-type VDCCalpha1 subunits and addi…

MaleCalcium Channels L-TypeBlotting WesternPresynaptic TerminalsRibbon synapseBiologyReceptors Metabotropic GlutamateSynaptic TransmissionEpitopesMicePostsynaptic potentialAnimalsCalcium SignalingActive zoneFluorescent Antibody Technique IndirectMicroscopy ImmunoelectronSequence DeletionMembrane potentialSheepVoltage-dependent calcium channelReverse Transcriptase Polymerase Chain ReactionCalcium channelMetabotropic glutamate receptor 6ColocalizationAnatomyBlotting NorthernMice Mutant StrainsPeptide FragmentsCell biologyMice Inbred C57BLFemaleCalcium ChannelsRabbitssense organsPhotoreceptor Cells VertebrateInvestigative Opthalmology & Visual Science
researchProduct