0000000000329172
AUTHOR
Narsinh L. Thakur
Marine molecular biology : An emerging field of biological sciences
An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives t…
Molecular/chemical ecology in sponges. Evidence for an adaptive antibacterial response in Suberites domuncola
Sponges (Porifera) represent the evolutionary oldest metazoan phylum still extant today. They have developed a complex Bauplan, based on the existence of structural and regulatory molecules; many of these have been cloned and analyzed in the past years. The demosponge Suberites domuncula has been used as a suitable model to demonstrate that these animals not only possess an adaptive immune response on the level of cytokines, but also, as pointed out here, on the level of synthesis of bioactive alkyl-lipid derivatives. From specimens of S. domuncula the two lyso-PAF (platelet-activating factor) compounds, 1-O-hexadecyl-sn-glycero-3-phosphocholine and 1-O-octadecyl-sn-glycero-3-phosphocholine…
Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for epibacterial chemical defense
The epibacterial chemical defense of the marine sponge Suberites domuncula was explored by screening sponge extract, sponge primmorph (3-D aggregates containing proliferating cells) extract and sponge-associated as well as primmorph-associated bacteria for antibacterial activ- ity. 16S rDNA sequencing revealed that the antimicrobially active bacteria belonged to the α - and γ- subdivisions of Proteobacteria (α -Proteobacterium MBIC 3368, Idiomarina sp. and Pseudomonas sp., respectively). Moreover, a recombinant perforin-like protein was cloned from S. domuncula that dis- played strong antibacterial activity. Based on these observations, it is proposed that the sponge may be provided with a …
Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene
Bioencapsulation is an intriguing way to immobilize biological materials, including cells, in silica, metal-oxides or hybrid sol-gel polymers. Until now only the sol-gel precursor technology was utilized to immobilize bacteria or yeast cells in silica. With the discovery of silicatein, an enzyme from demosponges that catalyzes the formation of poly(silicate), it became possible to synthesize poly(silicate) under physiological (ambient) conditions. Here we show that Escherichia coli can be transformed with the silicatein gene, its expression level in the presence of isopropyl beta-D-thiogalactopyranoside (IPTG) can be efficiently intensified by co-incubation with silicic acid. This effect co…
Poriferan survivin exhibits a conserved regulatory role in the interconnected pathways of cell cycle and apoptosis
Survivin orchestrates intracellular pathways during cell division and apoptosis. Its central function as mitotic regulator and inhibitor of cell death has major implications for tumor cell proliferation. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution a complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulator, a survivin-like protein (SURVL) of one of the earliest-branching metazoan taxa was identified and functionally characterized. SURVL of the sponge Suberites domuncula …
Oxygen-Controlled Bacterial Growth in the Sponge Suberites domuncula: toward a Molecular Understanding of the Symbiotic Relationships between Sponge and Bacteria†
ABSTRACT Sponges (phylum Porifera), known to be the richest producers among the metazoans of bioactive secondary metabolites, are assumed to live in a symbiotic relationship with microorganisms, especially bacteria. Until now, the molecular basis of the mutual symbiosis, the exchange of metabolites for the benefit of the other partner, has not been understood. We show with the demosponge Suberites domuncula as a model that the sponge expresses under optimal aeration conditions the enzyme tyrosinase, which synthesizes diphenols from monophenolic compounds. The cDNA isolated was used as a probe to determine the steady-state level of gene expression. The gene expression level parallels the lev…
Matrix-mediated canal formation in primmorphs from the sponge Suberites domuncula involves the expression of a CD36 receptor-ligand system.
Sponges (Porifera), represent the phylogenetically oldest metazoan phylum still extant today. Recently, molecular biological studies provided compelling evidence that these animals share basic receptor/ligand systems, especially those involved in bodyplan formation and in immune recognition, with the higher metazoan phyla. An in vitro cell/organ-like culture system, the primmorphs, has been established that consists of proliferating and differentiating cells, but no canals of the aquiferous system. We show that after the transfer of primmorphs from the demosponge Suberites domuncula to a homologous matrix (galectin), canal-like structures are formed in these 3D-cell aggregates. In parallel …
Innate Immune Defense of the Sponge Suberites domuncula against Bacteria Involves a MyD88-dependent Signaling Pathway
Sponges (phylum Porifera) are the phylogenetically oldest metazoa; as filter feeders, they are abundantly exposed to marine microorganisms. Here we present data indicating that the demosponge Suberites domuncula is provided with a recognition system for Gram-negative bacteria. The lipopolysaccharide (LPS)-interacting protein was identified as a receptor on the sponge cell surface, which recognizes the bacterial endotoxin LPS. The cDNA was isolated, and the protein (Mr 49,937) was expressed. During binding to LPS, the protein dimerizes and interacts with MyD88, which was also identified and cloned. The sponge MyD88 (Mr 28,441) is composed of two protein interaction domains, a Toll/interleuki…
Emergence and Disappearance of an Immune Molecule, an Antimicrobial Lectin, in Basal Metazoa
Sponges (phylum Porifera) represent the evolutionarily oldest metazoans that comprise already a complex immune system and are related to the crown taxa of the protostomians and the deuterostomians. Here, we demonstrate the existence of a tachylectin-related protein in the demosponge Suberites domuncula, termed Suberites lectin. The MAPK pathway was activated in response to lipopolysaccharide treatment of the three-dimensional cell aggregates, the primmorphs; this process was abolished by the monosaccharide D-GlcNAc. The cDNA encoding the S. domuncula lectin was identified and cloned; it comprises 238 amino acids (26 kDa) in the open reading frame. The deduced protein has one potential trans…