0000000000329361

AUTHOR

Elena Guardo

Special arrangements of lines: Codimension 2 ACM varieties in P 1 × P 1 × P 1

In this paper, we investigate special arrangements of lines in multiprojective spaces. In particular, we characterize codimension 2 arithmetically Cohen–Macaulay (ACM) varieties in [Formula: see text], called varieties of lines. We also describe their ACM property from a combinatorial algebra point of view.

research product

On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces

We study the arithmetically Cohen-Macaulay (ACM) property for finite sets of points in multiprojective spaces, especially ( P 1 ) n (\mathbb P^1)^n . A combinatorial characterization, the ( ⋆ ) (\star ) -property, is known in P 1 × P 1 \mathbb P^1 \times \mathbb P^1 . We propose a combinatorial property, ( ⋆ s ) (\star _s) with 2 ≤ s ≤ n 2\leq s\leq n , that directly generalizes the ( ⋆ ) (\star ) -property to ( P 1 ) n (\mathbb P^1)^n for larger n n . We show that X X is ACM if and only if it satisfies the ( ⋆ n ) (\star _n) -property. The main tool for several of our results is an extension to the multiprojective setting of certain liaison methods in projective space.

research product

Steiner systems and configurations of points

AbstractThe aim of this paper is to make a connection between design theory and algebraic geometry/commutative algebra. In particular, given any Steiner SystemS(t, n, v) we associate two ideals, in a suitable polynomial ring, defining a Steiner configuration of points and its Complement. We focus on the latter, studying its homological invariants, such as Hilbert Function and Betti numbers. We also study symbolic and regular powers associated to the ideal defining a Complement of a Steiner configuration of points, finding its Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence. We also compute the parameters of linear codes associated to any Steiner configur…

research product

The minimal free resolution of fat almost complete intersections in ℙ1 x ℙ1

AbstractA current research theme is to compare symbolic powers of an ideal I with the regular powers of I. In this paper, we focus on the case where I = IX is an ideal deûning an almost complete intersection (ACI) set of points X in ℙ1 × ℙ1. In particular, we describe a minimal free bigraded resolution of a non-arithmetically Cohen-Macaulay (also non-homogeneous) set 𝒵 of fat points whose support is an ACI, generalizing an earlier result of Cooper et al. for homogeneous sets of triple points. We call 𝒵 a fat ACI.We also show that its symbolic and ordinary powers are equal, i.e, .

research product

Rational normal curves and Hadamard products

AbstractGiven $$r>n$$ r > n general hyperplanes in $$\mathbb P^n,$$ P n , a star configuration of points is the set of all the n-wise intersection of the hyperplanes. We introduce contact star configurations, which are star configurations where all the hyperplanes are osculating to the same rational normal curve. In this paper, we find a relation between this construction and Hadamard products of linear varieties. Moreover, we study the union of contact star configurations on a same conic in $$\mathbb P^2$$ P 2 , we prove that the union of two contact star configurations has a special h-vector and, in some cases, this is a complete intersection.

research product

Expecting the unexpected: Quantifying the persistence of unexpected hypersurfaces

If $X \subset \mathbb P^n$ is a reduced subscheme, we say that $X$ admits an unexpected hypersurface of degree $t$ for multiplicity $m$ if the imposition of having multiplicity $m$ at a general point $P$ fails to impose the expected number of conditions on the linear system of hypersurfaces of degree $t$ containing $X$. Conditions which either guarantee the occurrence of unexpected hypersurfaces, or which ensure that they cannot occur, are not well understand. We introduce new methods for studying unexpectedness, such as the use of generic initial ideals and partial elimination ideals to clarify when it can and when it cannot occur. We also exhibit algebraic and geometric properties of $X$ …

research product

Steiner configurations ideals: Containment and colouring

Given a homogeneous ideal I&sube

research product