0000000000329857

AUTHOR

R. Tomas

showing 2 related works from this author

Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

2011

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsLow emittancePhysics and Astronomy (miscellaneous)Nuclear engineering[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]FOS: Physical sciencesbeam transport01 natural sciencesBeam characteristicslaw.inventionNuclear physicslaw0103 physical sciencesddc:530lcsh:Nuclear and particle physics. Atomic energy. RadioactivityBeam handling010306 general physicsAccelerator Test FacilityPhysicsFocus (computing)Research Groups and Centres\Physics\Low Temperature Physics010308 nuclear & particles physicsFaculty of Science\PhysicsBeam commissioningFísicaParticle acceleratorSurfaces and Interfaces29.27.Eg 29.27.Fh 29.20.dbAccelerators and Storage RingsStorage rings and collidersCOLLIDERSTechnology for normal conducting higher energy linear accelerators [9]BeamlineTest beamlcsh:QC770-798Physics - Accelerator PhysicsBeam (structure)
researchProduct

Type-II Supernovae and Neutrino Magnetic Moment

1998

The present solar and atmospheric neutrino data together with the LSND results and the presence of hot dark matter (HDM) suggest the existence of a sterile neutrino at the eV scale. We have reanalysed the effect of resonant {\sl sterile} neutrino conversions induced by neutrino magnetic moments in a type-II supernova. We analyse the implications of $\nu_e-\nu_s$ and $\bar{\nu}_e-\bar{\nu}_s$ ($\nu_s$ denotes sterile neutrino) conversions for the supernova shock re-heating, the detected $\bar\nu_e$ signal from SN1987A and the $r$-process nucleosynthesis hypothesis. Using reasonable magnetic field profiles we determine the sensitivity of these three arguments to the relevant neutrino paramete…

PhysicsSterile neutrinoParticle physicsMagnetic momentHot dark matterAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)FísicaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsMagnetic fieldHigh Energy Physics - PhenomenologySupernovaHigh Energy Physics - Phenomenology (hep-ph)NucleosynthesisHigh Energy Physics::ExperimentNeutrinoBar (unit)
researchProduct