0000000000330128
AUTHOR
B. Bally
In-beam gamma-ray and electron spectroscopy of $^{249,251}$Md
The odd-Z Md251 nucleus was studied using combined γ-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the [521]1/2− configuration, another rotational structure has been identified using γ-γ coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a [514]7/2− single-particle configuration has been inferred for this band, i.e., the ground-state band. A physical background that dominates the electron spectrum with an intensity of ≃60% was well reproduced by simulating a set of unresolved ex…
De-excitation of the strongly coupled band in 177Au and implications for core intruder configurations in the light Hg isotopes
International audience; Excited states in the proton-unbound nuclide $^{177}$Au were populated in the $^92}$Mo($^{88}$Sr, p2n) reaction and identified using the Jurogam-II and GREAT spectrometers in conjunction with the RITU gas-filled separator at the University of Jyväskylä Accelerator Laboratory. A strongly coupled band and its decay path to the 11/2−α-decaying isomer have been identified using recoil-decay tagging. Comparisons with cranked Hartree-Fock-Bogoliubov (HFB) calculations based on Skyrme energy functionals suggest that the band has a prolate deformation and is based upon coupling the odd 1h11/2 proton hole to the excited 02+ configuration in the $^{178}$Hg core. Although these…
In-beam γ-ray and electron spectroscopy of Md249,251
The odd-Z 251Md nucleus was studied using combined γ-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the [521]1/2− configuration, another rotational structure has been identified using γ−γ coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a [514]7/2− single-particle configuration has been inferred for this band, i.e., the ground-state band. A physical background that dominates the electron spectrum with an intensity of ≃60% was well reproduced by simulating a set of unresolved ex…
De-excitation of the strongly coupled band in Au177 and implications for core intruder configurations in the light Hg isotopes
Excited states in the proton-unbound nuclide $^{177}$Au were populated in the $^92}$Mo($^{88}$Sr, p2n) reaction and identified using the Jurogam-II and GREAT spectrometers in conjunction with the RITU gas-filled separator at the University of Jyvaskyla Accelerator Laboratory. A strongly coupled band and its decay path to the 11/2−α-decaying isomer have been identified using recoil-decay tagging. Comparisons with cranked Hartree-Fock-Bogoliubov (HFB) calculations based on Skyrme energy functionals suggest that the band has a prolate deformation and is based upon coupling the odd 1h11/2 proton hole to the excited 02+ configuration in the $^{178}$Hg core. Although these configurations might be…